Do you want to publish a course? Click here

An Automated Implementation of Hybrid Cloud for Performance Evaluation of Distributed Databases

189   0   0.0 ( 0 )
 Added by Yaser Mansouri
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

A Hybrid cloud is an integration of resources between private and public clouds. It enables users to horizontally scale their on-premises infrastructure up to public clouds in order to improve performance and cut up-front investment cost. This model of applications deployment is called cloud bursting that allows data-intensive applications especially distributed database systems to have the benefit of both private and public clouds. In this work, we present an automated implementation of a hybrid cloud using (i) a robust and zero-cost Linux-based VPN to make a secure connection between private and public clouds, and (ii) Terraform as a software tool to deploy infrastructure resources based on the requirements of hybrid cloud. We also explore performance evaluation of cloud bursting for six modern and distributed database systems on the hybrid cloud spanning over local OpenStack and Microsoft Azure. Our results reveal that MongoDB and MySQL Cluster work efficient in terms of throughput and operations latency if they burst into a public cloud to supply their resources. In contrast, the performance of Cassandra, Riak, Redis, and Couchdb reduces if they significantly leverage their required resources via cloud bursting.

rate research

Read More

Developing modern systems software is a complex task that combines business logic programming and Software Performance Engineering (SPE). The later is an experimental and labor-intensive activity focused on optimizing the system for a given hardware, software, and workload (hw/sw/wl) context. Todays SPE is performed during build/release phases by specialized teams, and cursed by: 1) lack of standardized and automated tools, 2) significant repeated work as hw/sw/wl context changes, 3) fragility induced by a one-size-fit-all tuning (where improvements on one workload or component may impact others). The net result: despite costly investments, system software is often outside its optimal operating point - anecdotally leaving 30% to 40% of performance on the table. The recent developments in Data Science (DS) hints at an opportunity: combining DS tooling and methodologies with a new developer experience to transform the practice of SPE. In this paper we present: MLOS, an ML-powered infrastructure and methodology to democratize and automate Software Performance Engineering. MLOS enables continuous, instance-level, robust, and trackable systems optimization. MLOS is being developed and employed within Microsoft to optimize SQL Server performance. Early results indicated that component-level optimizations can lead to 20%-90% improvements when custom-tuning for a specific hw/sw/wl, hinting at a significant opportunity. However, several research challenges remain that will require community involvement. To this end, we are in the process of open-sourcing the MLOS core infrastructure, and we are engaging with academic institutions to create an educational program around Software 2.0 and MLOS ideas.
It is now common to process volumetric biomedical images using 3D Convolutional Networks (ConvNets). This can be challenging for the teravoxel and even petavoxel images that are being acquired today by light or electron microscopy. Here we introduce chunkflow, a software framework for distributing ConvNet processing over local and cloud GPUs and CPUs. The image volume is divided into overlapping chunks, each chunk is processed by a ConvNet, and the results are blended together to yield the output image. The frontend submits ConvNet tasks to a cloud queue. The tasks are executed by local and cloud GPUs and CPUs. Thanks to the fault-tolerant architecture of Chunkflow, cost can be greatly reduced by utilizing cheap unstable cloud instances. Chunkflow currently supports PyTorch for GPUs and PZnet for CPUs. To illustrate its usage, a large 3D brain image from serial section electron microscopy was processed by a 3D ConvNet with a U-Net style architecture. Chunkflow provides some chunk operations for general use, and the operations can be composed flexibly in a command line interface.
Applications to process seismic data employ scalable parallel systems to produce timely results. To fully exploit emerging processor architectures, application will need to employ threaded parallelism within a node and message passing across nodes. Today, MPI+OpenMP is the preferred programming model for this task. However, tuning hybrid programs for clusters is difficult. Performance tools can help users identify bottlenecks and uncover opportunities for improvement. This poster describes our experiences of applying Rice Universitys HPCToolkit and hardware performance counters to gain insight into an MPI+OpenMP code that performs Reverse Time Migration (RTM) on a cluster of multicore processors. The tools provided us with insights into the effectiveness of the domain decomposition strategy, the use of threaded parallelism, and functional unit utilization in individual cores. By applying insights obtained from the tools, we were able to improve the performance of the RTM code by roughly 30 percent.
Distributed clusters like the Grid and PlanetLab enable the same statistical multiplexing efficiency gains for computing as the Internet provides for networking. One major challenge is allocating resources in an economically efficient and low-latency way. A common solution is proportional share, where users each get resources in proportion to their pre-defined weight. However, this does not allow users to differentiate the value of their jobs. This leads to economic inefficiency. In contrast, systems that require reservations impose a high latency (typically minutes to hours) to acquire resources. We present Tycoon, a market based distributed resource allocation system based on proportional share. The key advantages of Tycoon are that it allows users to differentiate the value of their jobs, its resource acquisition latency is limited only by communication delays, and it imposes no manual bidding overhead on users. We present experimental results using a prototype implementation of our design.
A benchmark study of modern distributed databases is an important source of information to select the right technology for managing data in the cloud-edge paradigms. To make the right decision, it is required to conduct an extensive experimental study on a variety of hardware infrastructures. While most of the state-of-the-art studies have investigated only response time and scalability of distributed databases, focusing on other various metrics (e.g., energy, bandwidth, and storage consumption) is essential to fully understand the resources consumption of the distributed databases. Also, existing studies have explored the response time and scalability of these databases either in private or public cloud. Hence, there is a paucity of investigation into the evaluation of these databases deployed in a hybrid cloud, which is the seamless integration of public and private cloud. To address these research gaps, in this paper, we investigate energy, bandwidth and storage consumption of the most used and common distributed databases. For this purpose, we have evaluated four open-source databases (Cassandra, Mongo, Redis and MySQL) on the hybrid cloud spanning over local OpenStack and Microsoft Azure, and a variety of edge computing nodes including Raspberry Pi, a cluster of Raspberry Pi, and low and high power servers. Our extensive experimental results reveal several helpful insights for the deployment selection of modern distributed databases in edge-cloud environments.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا