Do you want to publish a course? Click here

Evaluation of Distributed Databases in Hybrid Clouds and Edge Computing: Energy, Bandwidth, and Storage Consumption

217   0   0.0 ( 0 )
 Added by Yaser Mansouri
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

A benchmark study of modern distributed databases is an important source of information to select the right technology for managing data in the cloud-edge paradigms. To make the right decision, it is required to conduct an extensive experimental study on a variety of hardware infrastructures. While most of the state-of-the-art studies have investigated only response time and scalability of distributed databases, focusing on other various metrics (e.g., energy, bandwidth, and storage consumption) is essential to fully understand the resources consumption of the distributed databases. Also, existing studies have explored the response time and scalability of these databases either in private or public cloud. Hence, there is a paucity of investigation into the evaluation of these databases deployed in a hybrid cloud, which is the seamless integration of public and private cloud. To address these research gaps, in this paper, we investigate energy, bandwidth and storage consumption of the most used and common distributed databases. For this purpose, we have evaluated four open-source databases (Cassandra, Mongo, Redis and MySQL) on the hybrid cloud spanning over local OpenStack and Microsoft Azure, and a variety of edge computing nodes including Raspberry Pi, a cluster of Raspberry Pi, and low and high power servers. Our extensive experimental results reveal several helpful insights for the deployment selection of modern distributed databases in edge-cloud environments.



rate research

Read More

In this paper, we propose the DN-tree that is a data structure to build lossy summaries of the frequent data access patterns of the queries in a distributed graph data management system. These compact representations allow us an efficient communication of the data structure in distributed systems. We exploit this data structure with a new textit{Dynamic Data Partitioning} strategy (DYDAP) that assigns the portions of the graph according to historical data access patterns, and guarantees a small network communication and a computational load balance in distributed graph queries. This method is able to adapt dynamically to new workloads and evolve when the query distribution changes. Our experiments show that DYDAP yields a throughput up to an order of magnitude higher than previous methods based on cache specialization, in a variety of scenarios, and the average response time of the system is divided by two.
400 - Anh Dinh , Ji Wang , Sheng Wang 2017
Todays storage systems expose abstractions which are either too low-level (e.g., key-value store, raw-block store) that they require developers to re-invent the wheels, or too high-level (e.g., relational databases, Git) that they lack generality to support many classes of applications. In this work, we propose and implement a general distributed data storage system, called UStore, which has rich semantics. UStore delivers three key properties, namely immutability, sharing and security, which unify and add values to many classes of todays applications, and which also open the door for new applications. By keeping the core properties within the storage, UStore helps reduce application development efforts while offering high performance at hand. The storage embraces current hardware trends as key enablers. It is built around a data-structure similar to that of Git, a popular source code versioning system, but it also synthesizes many designs from distributed systems and databases. Our current implementation of UStore has better performance than general in-memory key-value storage systems, especially for version scan operations. We port and evaluate four applications on top of UStore: a Git-like application, a collaborative data science application, a transaction management application, and a blockchain application. We demonstrate that UStore enables faster development and the UStore-backed applications can have better performance than the existing implementations.
127 - Jun Li , Xiaoman Shen , Lei Chen 2019
Bandwidth slicing is introduced to support federated learning in edge computing to assure low communication delay for training traffic. Results reveal that bandwidth slicing significantly improves training efficiency while achieving good learning accuracy.
Blockchain has come a long way: a system that was initially proposed specifically for cryptocurrencies is now being adapted and adopted as a general-purpose transactional system. As blockchain evolves into another data management system, the natural question is how it compares against distributed database systems. Existing works on this comparison focus on high-level properties, such as security and throughput. They stop short of showing how the underlying design choices contribute to the overall differences. Our work fills this important gap and provides a principled framework for analyzing the emerging trend of blockchain-database fusion. We perform a twin study of blockchains and distributed database systems as two types of transactional systems. We propose a taxonomy that illustrates the dichotomy across four dimensions, namely replication, concurrency, storage, and sharding. Within each dimension, we discuss how the design choices are driven by two goals: security for blockchains, and performance for distributed databases. To expose the impact of different design choices on the overall performance, we conduct an in-depth performance analysis of two blockchains, namely Quorum and Hyperledger Fabric, and two distributed databases, namely TiDB, and etcd. Lastly, we propose a framework for back-of-the-envelope performance forecast of blockchain-database hybrids.
160 - Xi Zhang , Jan Chomicki 2009
We study here fundamental issues involved in top-k query evaluation in probabilistic databases. We consider simple probabilistic databases in which probabilities are associated with individual tuples, and general probabilistic databases in which, additionally, exclusivity relationships between tuples can be represented. In contrast to other recent research in this area, we do not limit ourselves to injective scoring functions. We formulate three intuitive postulates that the semantics of top-k queries in probabilistic databases should satisfy, and introduce a new semantics, Global-Topk, that satisfies those postulates to a large degree. We also show how to evaluate queries under the Global-Topk semantics. For simple databases we design dynamic-programming based algorithms, and for general databases we show polynomial-time reductions to the simple cases. For example, we demonstrate that for a fixed k the time complexity of top-k query evaluation is as low as linear, under the assumption that probabilistic databases are simple and scoring functions are injective.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا