Do you want to publish a course? Click here

Tycoon: an Implementation of a Distributed, Market-based Resource Allocation System

163   0   0.0 ( 0 )
 Added by Kevin Lai
 Publication date 2004
and research's language is English




Ask ChatGPT about the research

Distributed clusters like the Grid and PlanetLab enable the same statistical multiplexing efficiency gains for computing as the Internet provides for networking. One major challenge is allocating resources in an economically efficient and low-latency way. A common solution is proportional share, where users each get resources in proportion to their pre-defined weight. However, this does not allow users to differentiate the value of their jobs. This leads to economic inefficiency. In contrast, systems that require reservations impose a high latency (typically minutes to hours) to acquire resources. We present Tycoon, a market based distributed resource allocation system based on proportional share. The key advantages of Tycoon are that it allows users to differentiate the value of their jobs, its resource acquisition latency is limited only by communication delays, and it imposes no manual bidding overhead on users. We present experimental results using a prototype implementation of our design.



rate research

Read More

P2P clusters like the Grid and PlanetLab enable in principle the same statistical multiplexing efficiency gains for computing as the Internet provides for networking. The key unsolved problem is resource allocation. Existing solutions are not economically efficient and require high latency to acquire resources. We designed and implemented Tycoon, a market based distributed resource allocation system based on an Auction Share scheduling algorithm. Preliminary results show that Tycoon achieves low latency and high fairness while providing incentives for truth-telling on the part of strategic users.
In this paper we formulate the fixed budget resource allocation game to understand the performance of a distributed market-based resource allocation system. Multiple users decide how to distribute their budget (bids) among multiple machines according to their individual preferences to maximize their individual utility. We look at both the efficiency and the fairness of the allocation at the equilibrium, where fairness is evaluated through the measures of utility uniformity and envy-freeness. We show analytically and through simulations that despite being highly decentralized, such a system converges quickly to an equilibrium and unlike the social optimum that achieves high efficiency but poor fairness, the proposed allocation scheme achieves a nice balance of high degrees of efficiency and fairness at the equilibrium.
We propose a distributed algorithm to solve a special distributed multi-resource allocation problem with no direct inter-agent communication. We do so by extending a recently introduced additive-increase multiplicative-decrease (AIMD) algorithm, which only uses very little communication between the system and agents. Namely, a control unit broadcasts a one-bit signal to agents whenever one of the allocated resources exceeds capacity. Agents then respond to this signal in a probabilistic manner. In the proposed algorithm, each agent is unaware of the resource allocation of other agents. We also propose a version of the AIMD algorithm for multiple binary resources (e.g., parking spaces). Binary resources are indivisible unit-demand resources, and each agent either allocated one unit of the resource or none. In empirical results, we observe that in both cases, the average allocations converge over time to optimal allocations.
We describe here a structured system for distributed mechanism design appropriate for both Intranet and Internet applications. In our approach the players dynamically form a network in which they know neither their neighbours nor the size of the network and interact to jointly take decisions. The only assumption concerning the underlying communication layer is that for each pair of processes there is a path of neighbours connecting them. This allows us to deal with arbitrary network topologies. We also discuss the implementation of this system which consists of a sequence of layers. The lower layers deal with the operations that implement the basic primitives of distributed computing, namely low level communication and distributed termination, while the upper layers use these primitives to implement high level communication among players, including broadcasting and multicasting, and distributed decision making. This yields a highly flexible distributed system whose specific applications are realized as instances of its top layer. This design is implemented in Java. The system supports at various levels fault-tolerance and includes a provision for distributed policing the purpose of which is to exclude `dishonest players. Also, it can be used for repeated creation of dynamically formed networks of players interested in a joint decision making implemented by means of a tax-based mechanism. We illustrate its flexibility by discussing a number of implemented examples.
We propose a simple channel-allocation method based on tug-of-war (TOW) dynamics, combined with the time scheduling based on nonlinear oscillator synchronization to efficiently use of the space (channel) and time resources in wireless communications. This study demonstrates that synchronization groups, where each node selects a different channel, are non-uniformly distributed in phase space such that every distance between groups is larger than the area of influence. New type of self-organized spatiotemporal patterns can be formed for resource allocation according to channel rewards.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا