Do you want to publish a course? Click here

Cavity quantum electro-optics: Microwave-telecom conversion in the quantum ground state

60   0   0.0 ( 0 )
 Added by Johannes M. Fink
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fiber optic communication is the backbone of our modern information society, offering high bandwidth, low loss, weight, size and cost, as well as an immunity to electromagnetic interference. Microwave photonics lends these advantages to electronic sensing and communication systems, but - unlike the field of nonlinear optics - electro-optic devices so far require classical modulation fields whose variance is dominated by electronic or thermal noise rather than quantum fluctuations. Here we present a cavity electro-optic transceiver operating in a millikelvin environment with a mode occupancy as low as 0.025 $pm$ 0.005 noise photons. Our system is based on a lithium niobate whispering gallery mode resonator, resonantly coupled to a superconducting microwave cavity via the Pockels effect. For the highest continuous wave pump power of 1.48 mW we demonstrate bidirectional single-sideband conversion of X band microwave to C band telecom light with a total (internal) efficiency of 0.03 % (0.7 %) and an added output conversion noise of 5.5 photons. The high bandwidth of 10.7 MHz combined with the observed very slow heating rate of 1.1 noise photons s$^{-1}$ puts quantum limited pulsed microwave-optics conversion within reach. The presented device is versatile and compatible with superconducting qubits, which might open the way for fast and deterministic entanglement distribution between microwave and optical fields, for optically mediated remote entanglement of superconducting qubits, and for new multiplexed cryogenic circuit control and readout strategies.



rate research

Read More

594 - Wei Fu , Mingrui Xu , Xianwen Liu 2020
In the development of quantum microwave-to-optical (MO) converters, excessive noise induced by the parametric optical drive remains a major challenge at milli-Kelvin temperatures. Here we study the extraneous noise added to an electro-optic transducer in its quantum ground state under an intense pulsed optical excitation. The integrated electro-optical transducer leverages the inherent Pockels effect of aluminum nitride microrings, flip-chip bonded to a superconducting resonator. Applying a pulsed optical drive with peak power exceeding the cooling power of the dilution refrigerator at its base temperature, we observe efficient bi-directional MO conversion, with near-ground state microwave thermal excitation ($bar{n}_mathrm{e}=0.09pm0.06$). Time evolution study reveals that the residual thermal excitation is dominated by the superconductor absorption of stray light scattered off the chip-fiber interface. Our results shed light on suppressing microwave noise in a cavity electro-optic system under intense optical drive, which is an essential step towards quantum state transduction between microwave and optical frequencies.
Quantum frequency conversion (QFC), a nonlinear optical process in which the frequency of a quantum light field is altered while conserving its non-classical correlations, was first demonstrated 20 years ago. Meanwhile, it is considered an essential tool for the implementation of quantum repeaters since it allows for interfacing quantum memories with telecom-wavelength photons as quantum information carriers. Here we demonstrate efficient (>30%) QFC of visible single photons (711 nm) emitted by a quantum dot (QD) to a telecom wavelength (1,313 nm). Analysis of the first and second-order coherence before and after wavelength conversion clearly proves that important properties, such as the coherence time and photon antibunching, are fully conserved during the frequency translation process. Our findings underline the great potential of single photon sources on demand in combination with QFC as a promising technique for quantum repeater schemes.
356 - Na Zhu , Xufeng Zhang , Xu Han 2020
Cavity optomagnonics has emerged as a promising platform for studying coherent photon-spin interactions as well as tunable microwave-to-optical conversion. However, current implementation of cavity optomagnonics in ferrimagnetic crystals remains orders of magnitude larger in volume than state-of-the-art cavity optomechanical devices, resulting in very limited magneto-optical interaction strength. Here, we demonstrate a cavity optomagnonic device based on integrated waveguides and its application for microwave-to-optical conversion. By designing a ferrimagnetic rib waveguide to support multiple magnon modes with maximal mode overlap to the optical field, we realize a high magneto-optical cooperativity which is three orders of magnitude higher compared to previous records obtained on polished YIG spheres. Furthermore, we achieve tunable conversion of microwave photons at around 8.45 GHz to 1550 nm light with a broad conversion bandwidth as large as 16.1 MHz. The unique features of the system point to novel applications at the crossroad between quantum optics and magnonics.
Conversion between signals in the microwave and optical domains is of great interest both for classical telecommunication, as well as for connecting future superconducting quantum computers into a global quantum network. For quantum applications, the conversion has to be both efficient, as well as operate in a regime of minimal added classical noise. While efficient conversion has been demonstrated using mechanical transducers, they have so far all operated with a substantial thermal noise background. Here, we overcome this limitation and demonstrate coherent conversion between GHz microwave signals and the optical telecom band with a thermal background of less than one phonon. We use an integrated, on-chip electro-opto-mechanical device that couples surface acoustic waves driven by a resonant microwave signal to an optomechanical crystal featuring a 2.7 GHz mechanical mode. We initialize the mechanical mode in its quantum groundstate, which allows us to perform the transduction process with minimal added thermal noise, while maintaining an optomechanical cooperativity >1, so that microwave photons mapped into the mechanical resonator are effectively upconverted to the optical domain. We further verify the preservation of the coherence of the microwave signal throughout the transduction process.
Cavity quantum electrodynamics (CQED) investigates the interaction between light confined in a resonator and particles, such as atoms. In recent years, CQED experiments have reached the optical domain resulting in many interesting applications in the realm of quantum information processing. For many of these application it is necessary to overcome limitations imposed by photon loss. In this context whispering-gallery mode (WGM) resonators have obtained significant interest. Besides their small mode volume and their ultra high quality, they also exhibit favorable polarization properties that give rise to chiral light--matter interaction. In this chapter, we will discuss the origin and the consequences of these chiral features and we review recent achievements in this area.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا