Do you want to publish a course? Click here

Ground-state Pulsed Cavity Electro-optics for Microwave-to-optical Conversion

595   0   0.0 ( 0 )
 Added by Mingrui Xu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the development of quantum microwave-to-optical (MO) converters, excessive noise induced by the parametric optical drive remains a major challenge at milli-Kelvin temperatures. Here we study the extraneous noise added to an electro-optic transducer in its quantum ground state under an intense pulsed optical excitation. The integrated electro-optical transducer leverages the inherent Pockels effect of aluminum nitride microrings, flip-chip bonded to a superconducting resonator. Applying a pulsed optical drive with peak power exceeding the cooling power of the dilution refrigerator at its base temperature, we observe efficient bi-directional MO conversion, with near-ground state microwave thermal excitation ($bar{n}_mathrm{e}=0.09pm0.06$). Time evolution study reveals that the residual thermal excitation is dominated by the superconductor absorption of stray light scattered off the chip-fiber interface. Our results shed light on suppressing microwave noise in a cavity electro-optic system under intense optical drive, which is an essential step towards quantum state transduction between microwave and optical frequencies.



rate research

Read More

Fiber optic communication is the backbone of our modern information society, offering high bandwidth, low loss, weight, size and cost, as well as an immunity to electromagnetic interference. Microwave photonics lends these advantages to electronic sensing and communication systems, but - unlike the field of nonlinear optics - electro-optic devices so far require classical modulation fields whose variance is dominated by electronic or thermal noise rather than quantum fluctuations. Here we present a cavity electro-optic transceiver operating in a millikelvin environment with a mode occupancy as low as 0.025 $pm$ 0.005 noise photons. Our system is based on a lithium niobate whispering gallery mode resonator, resonantly coupled to a superconducting microwave cavity via the Pockels effect. For the highest continuous wave pump power of 1.48 mW we demonstrate bidirectional single-sideband conversion of X band microwave to C band telecom light with a total (internal) efficiency of 0.03 % (0.7 %) and an added output conversion noise of 5.5 photons. The high bandwidth of 10.7 MHz combined with the observed very slow heating rate of 1.1 noise photons s$^{-1}$ puts quantum limited pulsed microwave-optics conversion within reach. The presented device is versatile and compatible with superconducting qubits, which might open the way for fast and deterministic entanglement distribution between microwave and optical fields, for optically mediated remote entanglement of superconducting qubits, and for new multiplexed cryogenic circuit control and readout strategies.
356 - Na Zhu , Xufeng Zhang , Xu Han 2020
Cavity optomagnonics has emerged as a promising platform for studying coherent photon-spin interactions as well as tunable microwave-to-optical conversion. However, current implementation of cavity optomagnonics in ferrimagnetic crystals remains orders of magnitude larger in volume than state-of-the-art cavity optomechanical devices, resulting in very limited magneto-optical interaction strength. Here, we demonstrate a cavity optomagnonic device based on integrated waveguides and its application for microwave-to-optical conversion. By designing a ferrimagnetic rib waveguide to support multiple magnon modes with maximal mode overlap to the optical field, we realize a high magneto-optical cooperativity which is three orders of magnitude higher compared to previous records obtained on polished YIG spheres. Furthermore, we achieve tunable conversion of microwave photons at around 8.45 GHz to 1550 nm light with a broad conversion bandwidth as large as 16.1 MHz. The unique features of the system point to novel applications at the crossroad between quantum optics and magnonics.
Linking classical microwave electrical circuits to the optical telecommunication band is at the core of modern communication. Future quantum information networks will require coherent microwave-to-optical conversion to link electronic quantum processors and memories via low-loss optical telecommunication networks. Efficient conversion can be achieved with electro-optical modulators operating at the single microwave photon level. In the standard electro-optic modulation scheme this is impossible because both, up- and downconverted, sidebands are necessarily present. Here we demonstrate true single sideband up- or downconversion in a triply resonant whispering gallery mode resonator by explicitly addressing modes with asymmetric free spectral range. Compared to previous experiments, we show a three orders of magnitude improvement of the electro-optical conversion efficiency reaching 0.1% photon number conversion for a 10GHz microwave tone at 0.42mW of optical pump power. The presented scheme is fully compatible with existing superconducting 3D circuit quantum electrodynamics technology and can be used for non-classical state conversion and communication. Our conversion bandwidth is larger than 1MHz and not fundamentally limited.
Atomic vapors offer many opportunities for manipulating electromagnetic signals across a broad range of the electromagnetic spectrum. Here, a microwave signal with an audio-frequency modulation encodes information in an optical signal by exploiting an atomic microwave-to-optical double resonance, and magnetic-field coupling that is amplified by a resonant high-Q microwave cavity. Using this approach, audio signals are encoded as amplitude or frequency modulations in a GHz carrier, transmitted through a cable or over free space, demodulated through cavity-enhanced atom-microwave interactions, and finally, optically detected to extract the original information. This atom-cavity signal transduction technique provides a powerful means by which to transfer information between microwave and optical fields, all using a relatively simple experimental setup without active electronics.
Mechanical resonators can act as excellent intermediaries to interface single photons in the microwave and optical domains due to their high quality factors. Nevertheless, the optical pump required to overcome the large energy difference between the frequencies can add significant noise to the transduced signal. Here we exploit the remarkable properties of thin-film gallium phosphide to demonstrate on-chip microwave-to-optical conversion, realised by piezoelectric actuation of a Gigahertz-frequency optomechanical resonator. The large optomechanical coupling and the suppression of two-photon absorption in the material allows us to operate the device at optomechanical cooperativities greatly exceeding one, and, when using a pulsed upconversion pump, induce less than one thermal noise phonon. We include a high-impedance on-chip matching resonator to mediate the mechanical load with the 50-Ohm source. Our results establish gallium phosphide as a versatile platform for ultra-low-noise conversion of photons between microwave and optical frequencies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا