Do you want to publish a course? Click here

Position-based Scaled Gradient for Model Quantization and Pruning

100   0   0.0 ( 0 )
 Added by Jangho Kim
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We propose the position-based scaled gradient (PSG) that scales the gradient depending on the position of a weight vector to make it more compression-friendly. First, we theoretically show that applying PSG to the standard gradient descent (GD), which is called PSGD, is equivalent to the GD in the warped weight space, a space made by warping the original weight space via an appropriately designed invertible function. Second, we empirically show that PSG acting as a regularizer to a weight vector is favorable for model compression domains such as quantization and pruning. PSG reduces the gap between the weight distributions of a full-precision model and its compressed counterpart. This enables the versatile deployment of a model either as an uncompressed mode or as a compressed mode depending on the availability of resources. The experimental results on CIFAR-10/100 and ImageNet datasets show the effectiveness of the proposed PSG in both domains of pruning and quantization even for extremely low bits. The code is released in Github.

rate research

Read More

In the traditional deep compression framework, iteratively performing network pruning and quantization can reduce the model size and computation cost to meet the deployment requirements. However, such a step-wise application of pruning and quantization may lead to suboptimal solutions and unnecessary time consumption. In this paper, we tackle this issue by integrating network pruning and quantization as a unified joint compression problem and then use AutoML to automatically solve it. We find the pruning process can be regarded as the channel-wise quantization with 0 bit. Thus, the separate two-step pruning and quantization can be simplified as the one-step quantization with mixed precision. This unification not only simplifies the compression pipeline but also avoids the compression divergence. To implement this idea, we propose the automated model compression by jointly applied pruning and quantization (AJPQ). AJPQ is designed with a hierarchical architecture: the layer controller controls the layer sparsity, and the channel controller decides the bit-width for each kernel. Following the same importance criterion, the layer controller and the channel controller collaboratively decide the compression strategy. With the help of reinforcement learning, our one-step compression is automatically achieved. Compared with the state-of-the-art automated compression methods, our method obtains a better accuracy while reducing the storage considerably. For fixed precision quantization, AJPQ can reduce more than five times model size and two times computation with a slight performance increase for Skynet in remote sensing object detection. When mixed-precision is allowed, AJPQ can reduce five times model size with only 1.06% top-5 accuracy decline for MobileNet in the classification task.
139 - Dan Liu , Xi Chen , Jie Fu 2021
We propose pruning ternary quantization (PTQ), a simple, yet effective, symmetric ternary quantization method. The method significantly compresses neural network weights to a sparse ternary of [-1,0,1] and thus reduces computational, storage, and memory footprints. We show that PTQ can convert regular weights to ternary orthonormal bases by simply using pruning and L2 projection. In addition, we introduce a refined straight-through estimator to finalize and stabilize the quantized weights. Our method can provide at most 46x compression ratio on the ResNet-18 structure, with an acceptable accuracy of 65.36%, outperforming leading methods. Furthermore, PTQ can compress a ResNet-18 model from 46 MB to 955KB (~48x) and a ResNet-50 model from 99 MB to 3.3MB (~30x), while the top-1 accuracy on ImageNet drops slightly from 69.7% to 65.3% and from 76.15% to 74.47%, respectively. Our method unifies pruning and quantization and thus provides a range of size-accuracy trade-off.
We investigate pruning and quantization for deep neural networks. Our goal is to achieve extremely high sparsity for quantized networks to enable implementation on low cost and low power accelerator hardware. In a practical scenario, there are particularly many applications for dense prediction tasks, hence we choose stereo depth estimation as target. We propose a two stage pruning and quantization pipeline and introduce a Taylor Score alongside a new fine-tuning mode to achieve extreme sparsity without sacrificing performance. Our evaluation does not only show that pruning and quantization should be investigated jointly, but also shows that almost 99% of memory demand can be cut while hardware costs can be reduced up to 99.9%. In addition, to compare with other works, we demonstrate that our pruning stage alone beats the state-of-the-art when applied to ResNet on CIFAR10 and ImageNet.
Low-bit quantization is challenging to maintain high performance with limited model capacity (e.g., 4-bit for both weights and activations). Naturally, the distribution of both weights and activations in deep neural network are Gaussian-like. Nevertheless, due to the limited bitwidth of low-bit model, uniform-like distributed weights and activations have been proved to be more friendly to quantization while preserving accuracy~cite{Han2015Learning}. Motivated by this, we propose Scale-Clip, a Distribution Reshaping technique that can reshape weights or activations into a uniform-like distribution in a dynamic manner. Furthermore, to increase the model capability for a low-bit model, a novel Group-based Quantization algorithm is proposed to split the filters into several groups. Different groups can learn different quantization parameters, which can be elegantly merged in to batch normalization layer without extra computational cost in the inference stage. Finally, we integrate Scale-Clip technique with Group-based Quantization algorithm and propose the Group-based Distribution Reshaping Quantization (GDQR) framework to further improve the quantization performance. Experiments on various networks (e.g. VGGNet and ResNet) and vision tasks (e.g. classification, detection and segmentation) demonstrate that our framework achieves good performance.
As edge devices become prevalent, deploying Deep Neural Networks (DNN) on edge devices has become a critical issue. However, DNN requires a high computational resource which is rarely available for edge devices. To handle this, we propose a novel model compression method for the devices with limited computational resources, called PQK consisting of pruning, quantization, and knowledge distillation (KD) processes. Unlike traditional pruning and KD, PQK makes use of unimportant weights pruned in the pruning process to make a teacher network for training a better student network without pre-training the teacher model. PQK has two phases. Phase 1 exploits iterative pruning and quantization-aware training to make a lightweight and power-efficient model. In phase 2, we make a teacher network by adding unimportant weights unused in phase 1 to a pruned network. By using this teacher network, we train the pruned network as a student network. In doing so, we do not need a pre-trained teacher network for the KD framework because the teacher and the student networks coexist within the same network. We apply our method to the recognition model and verify the effectiveness of PQK on keyword spotting (KWS) and image recognition.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا