Do you want to publish a course? Click here

GDRQ: Group-based Distribution Reshaping for Quantization

91   0   0.0 ( 0 )
 Added by Haibao Yu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Low-bit quantization is challenging to maintain high performance with limited model capacity (e.g., 4-bit for both weights and activations). Naturally, the distribution of both weights and activations in deep neural network are Gaussian-like. Nevertheless, due to the limited bitwidth of low-bit model, uniform-like distributed weights and activations have been proved to be more friendly to quantization while preserving accuracy~cite{Han2015Learning}. Motivated by this, we propose Scale-Clip, a Distribution Reshaping technique that can reshape weights or activations into a uniform-like distribution in a dynamic manner. Furthermore, to increase the model capability for a low-bit model, a novel Group-based Quantization algorithm is proposed to split the filters into several groups. Different groups can learn different quantization parameters, which can be elegantly merged in to batch normalization layer without extra computational cost in the inference stage. Finally, we integrate Scale-Clip technique with Group-based Quantization algorithm and propose the Group-based Distribution Reshaping Quantization (GDQR) framework to further improve the quantization performance. Experiments on various networks (e.g. VGGNet and ResNet) and vision tasks (e.g. classification, detection and segmentation) demonstrate that our framework achieves good performance.

rate research

Read More

101 - Di Wu , Qi Tang , Yongle Zhao 2020
The 8 bits quantization has been widely applied to accelerate network inference in various deep learning applications. There are two kinds of quantization methods, training-based quantization and post-training quantization. Training-based approach suffers from a cumbersome training process, while post-training quantization may lead to unacceptable accuracy drop. In this paper, we present an efficient and simple post-training method via scale optimization, named EasyQuant (EQ),that could obtain comparable accuracy with the training-based method.Specifically, we first alternately optimize scales of weights and activations for all layers target at convolutional outputs to further obtain the high quantization precision. Then, we lower down bit width to INT7 both for weights and activations, and adopt INT16 intermediate storage and integer Winograd convolution implementation to accelerate inference.Experimental results on various computer vision tasks show that EQ outperforms the TensorRT method and can achieve near INT8 accuracy in 7 bits width post-training.
We propose the position-based scaled gradient (PSG) that scales the gradient depending on the position of a weight vector to make it more compression-friendly. First, we theoretically show that applying PSG to the standard gradient descent (GD), which is called PSGD, is equivalent to the GD in the warped weight space, a space made by warping the original weight space via an appropriately designed invertible function. Second, we empirically show that PSG acting as a regularizer to a weight vector is favorable for model compression domains such as quantization and pruning. PSG reduces the gap between the weight distributions of a full-precision model and its compressed counterpart. This enables the versatile deployment of a model either as an uncompressed mode or as a compressed mode depending on the availability of resources. The experimental results on CIFAR-10/100 and ImageNet datasets show the effectiveness of the proposed PSG in both domains of pruning and quantization even for extremely low bits. The code is released in Github.
We present a new supervised image classification method applicable to a broad class of image deformation models. The method makes use of the previously described Radon Cumulative Distribution Transform (R-CDT) for image data, whose mathematical properties are exploited to express the image data in a form that is more suitable for machine learning. While certain operations such as translation, scaling, and higher-order transformations are challenging to model in native image space, we show the R-CDT can capture some of these variations and thus render the associated image classification problems easier to solve. The method -- utilizing a nearest-subspace algorithm in R-CDT space -- is simple to implement, non-iterative, has no hyper-parameters to tune, is computationally efficient, label efficient, and provides competitive accuracies to state-of-the-art neural networks for many types of classification problems. In addition to the test accuracy performances, we show improvements (with respect to neural network-based methods) in terms of computational efficiency (it can be implemented without the use of GPUs), number of training samples needed for training, as well as out-of-distribution generalization. The Python code for reproducing our results is available at https://github.com/rohdelab/rcdt_ns_classifier.
Recent improvements in generative adversarial visual synthesis incorporate real and fake image transformation in a self-supervised setting, leading to increased stability and perceptual fidelity. However, these approaches typically involve image augmentations via additional regularizers in the GAN objective and thus spend valuable network capacity towards approximating transformation equivariance instead of their desired task. In this work, we explicitly incorporate inductive symmetry priors into the network architectures via group-equivariant convolutional networks. Group-convolutions have higher expressive power with fewer samples and lead to better gradient feedback between generator and discriminator. We show that group-equivariance integrates seamlessly with recent techniques for GAN training across regularizers, architectures, and loss functions. We demonstrate the utility of our methods for conditional synthesis by improving generation in the limited data regime across symmetric imaging datasets and even find benefits for natural images with preferred orientation.
Deep neural networks (DNNs), especially convolutional neural networks, have achieved superior performance on image classification tasks. However, such performance is only guaranteed if the input to a trained model is similar to the training samples, i.e., the input follows the probability distribution of the training set. Out-Of-Distribution (OOD) samples do not follow the distribution of training set, and therefore the predicted class labels on OOD samples become meaningless. Classification-based methods have been proposed for OOD detection; however, in this study we show that this type of method has no theoretical guarantee and is practically breakable by our OOD Attack algorithm because of dimensionality reduction in the DNN models. We also show that Glow likelihood-based OOD detection is breakable as well.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا