Do you want to publish a course? Click here

Quandle cohomology, extensions and automorphisms

129   0   0.0 ( 0 )
 Added by Mahender Singh
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The paper establishes new relationship between cohomology, extensions and automorphisms of quandles. We derive a four term exact sequence relating quandle 1-cocycles, second quandle cohomology and certain group of automorphisms of an abelian extension of quandles. A non-abelian counterpart of this sequence involving dynamical cohomology classes is also established, and some applications to lifting of quandle automorphisms are given. Viewing the construction of the conjugation, the core and the generalised Alexander quandle of a group as an adjoint functor of some appropriate functor from the category of quandles to the category of groups, we prove that these functors map extensions of groups to extensions of quandles. Finally, we construct some natural group homomorphisms from the second cohomology of a group to the second cohomology of its core and conjugation quandles.



rate research

Read More

94 - J. Scott Carter 2003
Three new knot invariants are defined using cocycles of the generalized quandle homology theory that was proposed by Andruskiewitsch and Gra~na. We specialize that theory to the case when there is a group action on the coefficients. First, quandle modules are used to generalize Burau representations and Alexander modules for classical knots. Second, 2-cocycles valued in non-abelian groups are used in a way similar to Hopf algebra invariants of classical knots. These invariants are shown to be of quantum type. Third, cocycles with group actions on coefficient groups are used to define quandle cocycle invariants for both classical knots and knotted surfaces. Concrete computational methods are provided and used to prove non-invertibility for a large family of knotted surfaces. In the classical case, the invariant can detect the chirality of 3-colorable knots in a number of cases.
Let $G$ be a finitely generated group that can be written as an extension [ 1 longrightarrow K stackrel{i}{longrightarrow} G stackrel{f}{longrightarrow} Gamma longrightarrow 1 ] where $K$ is a finitely generated group. By a study of the BNS invariants we prove that if $b_1(G) > b_1(Gamma) > 0$, then $G$ algebraically fibers, i.e. admits an epimorphism to $Bbb{Z}$ with finitely generated kernel. An interesting case of this occurrence is when $G$ is the fundamental group of a surface bundle over a surface $F hookrightarrow X rightarrow B$ with Albanese dimension $a(X) = 2$. As an application, we show that if $X$ has virtual Albanese dimension $va(X) = 2$ and base and fiber have genus greater that $1$, $G$ is noncoherent. This answers for a broad class of bundles a question of J. Hillman.
252 - J. Scott Carter 2004
This paper is a brief overview of some of our recent results in collaboration with other authors. The cocycle invariants of classical knots and knotted surfaces are summarized, and some applications are presented.
98 - Yongju Bae 2018
Wreath products of finite groups have permutation representations that are constructed from the permutation representations of their constituents. One can envision these in a metaphoric sense in which a rope is made from a bundle of threads. In this way, subgroups and quotients are easily visualized. The general idea is applied to the finite subgroups of the special unitary group of $(2times 2)$-matrices. Amusing diagrams are developed that describe the unit quaternions, the binary tetrahedral, octahedral, and icosahedral group as well as the dicyclic groups. In all cases, the quotients as subgroups of the permutation group are readily apparent. These permutation representations lead to injective homomorphisms into wreath products.
We enhance the quandle coloring quiver invariant of oriented knots and links with quandle modules. This results in a two-variable polynomial invariant with specializes to the previous quandle module polynomial invariant as well as to the quandle counting invariant. We provide example computations to show that the enhancement is proper in the sense that it distinguishes knots and links with the same quandle module polynomial.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا