This paper is a brief overview of some of our recent results in collaboration with other authors. The cocycle invariants of classical knots and knotted surfaces are summarized, and some applications are presented.
Three new knot invariants are defined using cocycles of the generalized quandle homology theory that was proposed by Andruskiewitsch and Gra~na. We specialize that theory to the case when there is a group action on the coefficients. First, quandle modules are used to generalize Burau representations and Alexander modules for classical knots. Second, 2-cocycles valued in non-abelian groups are used in a way similar to Hopf algebra invariants of classical knots. These invariants are shown to be of quantum type. Third, cocycles with group actions on coefficient groups are used to define quandle cocycle invariants for both classical knots and knotted surfaces. Concrete computational methods are provided and used to prove non-invertibility for a large family of knotted surfaces. In the classical case, the invariant can detect the chirality of 3-colorable knots in a number of cases.
We enhance the quandle coloring quiver invariant of oriented knots and links with quandle modules. This results in a two-variable polynomial invariant with specializes to the previous quandle module polynomial invariant as well as to the quandle counting invariant. We provide example computations to show that the enhancement is proper in the sense that it distinguishes knots and links with the same quandle module polynomial.
Quandle coloring quivers are directed graph-valued invariants of oriented knots and links, defined using a choice of finite quandle $X$ and set $Ssubsetmathrm{Hom}(X,X)$ of endomorphisms. From a quandle coloring quiver, a polynomial knot invariant known as the textit{in-degree quiver polynomial} is defined. We consider quandle coloring quiver invariants for oriented surface-links, represented by marked graph diagrams. We provide example computations for all oriented surface-links with ch-index up to 10 for choices of quandles and endomorphisms.
The paper establishes new relationship between cohomology, extensions and automorphisms of quandles. We derive a four term exact sequence relating quandle 1-cocycles, second quandle cohomology and certain group of automorphisms of an abelian extension of quandles. A non-abelian counterpart of this sequence involving dynamical cohomology classes is also established, and some applications to lifting of quandle automorphisms are given. Viewing the construction of the conjugation, the core and the generalised Alexander quandle of a group as an adjoint functor of some appropriate functor from the category of quandles to the category of groups, we prove that these functors map extensions of groups to extensions of quandles. Finally, we construct some natural group homomorphisms from the second cohomology of a group to the second cohomology of its core and conjugation quandles.
We study generalizations of a classical link invariant -- the multivariable Alexander polynomial -- to tangles. The starting point is Archibalds tMVA invariant for virtual tangles which lives in the setting of circuit algebras, and whose target space has dimension that is exponential in the number of strands. Using the Hodge star map and restricting to tangles without closed components, we define a reduction of the tMVA to an invariant rMVA which is valued in matrices with Laurent polynomial entries, and so has a much more compact target space. We show the rMVA has the structure of a metamonoid morphism and is further equivalent to a tangle invariant defined by Bar-Natan. This invariant also reduces to the Gassner representation on braids and has a partially defined trace operation for closing open strands of a tangle.