Do you want to publish a course? Click here

Binary evolution along the Red Giant Branch with BINSTAR: The barium star perspective

130   0   0.0 ( 0 )
 Added by Ana Escorza
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Barium (Ba), CH, and extrinsic or Tc-poor S-type stars are evolved low- and intermediate-mass stars that show enhancement of slow-neutron-capture-process elements on their surface, an indication of mass accretion from a former asymptotic giant branch (AGB) companion, which is now a white dwarf (WD). Ba and CH stars can be found in the main-sequence (MS), the sub-giant, and the giant phase, while extrinsic S-type stars populate the giant branches only. As these polluted stars evolve, they might be involved in a second phase of interaction with their now white dwarf companion. In this paper, we consider systems composed of a main-sequence Ba star and a WD companion when the former evolves along the Red Giant Branch (RGB). We want to determine if the orbital properties of the known population of Ba, CH, and S giants can be inferred from the evolution of their suspected dwarf progenitors. For this purpose, we use the BINSTAR binary evolution code and model MS+WD binary systems, considering different binary interaction mechanisms, such as a tidally-enhanced wind mass-loss and a reduced circularisation efficiency. To explore their impact on the second RGB ascent, we compare the modelled orbits with the observed period and eccentricity distributions of Ba and related giants. We show that, independently of the considered mechanism, there is a strong period cut off below which core-He burning stars should not be found in binary systems with a WD companion. This limit is shorter for more massive RGB stars and for more metal-poor systems. However, we still find a few low-mass short-period giant systems that are difficult to explain with our models as well as two systems with very high eccentricities.



rate research

Read More

Transport of angular momentum in stellar interiors is currently not well understood. Asteroseismology can provide us with estimates of internal rotation of stars and thereby advances our understanding of angular momentum transport. We can measure core-rotation rates in red-giant stars and we can place upper bounds on surface-rotation rates using measurements of dipole ($l=1$) modes. Here, we aim to determine the theoretical sensitivity of modes of different spherical degree towards the surface rotation. Additionally, we aim to identify modes that can potentially add sensitivity at intermediate radii. We used asteroseismic rotational
Common-envelope phases are decisive for the evolution of many binary systems. Of particular interest are cases with asymptotic giant branch (AGB) primary stars, because they are thought to be progenitors of various astrophysical transients. In three-dimensional hydrodynamic simulations with the moving-mesh code AREPO, we study the common-envelope evolution of a $1.0,M_{odot}$ early-AGB star with companions of different masses. Although the stellar envelope of the AGB star is less tightly bound than that of a red giant, we find that the release of orbital energy of the core binary is insufficient to eject more than about twenty percent of the envelope mass. Ionization energy released in the expanding envelope, however, can lead to complete envelope ejection. Because recombination proceeds largely at high optical depths in our simulations, it is likely that this effect indeed plays a significant role in the considered systems. The efficiency of mass loss and the final orbital separation of the core binary system depend on the mass ratio between the companion and the primary star. Our results suggest a linear relation between the ratio of final to initial orbital separation and this parameter.
The location of Galactic Globular Clusters (GC) stars on the horizontal branch (HB) should mainly depend on GC metallicity, the first parameter, but it is actually the result of complex interactions between the red giant branch (RGB) mass loss, the coexistence of multiple stellar populations with different helium content, and the presence of a second parameter which produces dramatic differences in HB morphology of GCs of similar metallicity and ages (like the pair M3--M13). In this work, we combine the entire dataset from the Hubble Space Telescope Treasury survey and stellar evolutionary models, to analyse the HBs of 46 GCs. For the first time in a large sample of GCs, we generate population synthesis models, where the helium abundances for the first and the extreme second generations are constrained using independent measurements based on RGB stars. The main results are: 1) the mass loss of first generation stars is tightly correlated to cluster metallicity. 2) the location of helium enriched stars on the HB is reproduced only by adopting a higher RGB mass loss than for the first generation. The difference in mass loss correlates with helium enhancement and cluster mass. 3) A model of pre-main sequence disc early loss, previously developed by the authors, explains such a mass loss increase and is consistent with the findings of multiple-population formation models predicting that populations more enhanced in helium tend to form with higher stellar densities and concentrations. 4) Helium-enhancement and mass-loss both contribute to the second parameter.
154 - David M. Nataf 2014
We compare model predictions to observations of star counts in the red giant branch bump (RGBB) relative to the number density of first-ascent red giant branch at the magnitude of the RGBB, $EW_{RGBB}$. The predictions are shown to exceed the data by $(5.2 pm 4.3)$% for the BaSTI models and by $(17.1 pm 4.3)$% for the Dartmouth models, where the listed errors are purely statistical. These two offsets are brought to zero if the Galactic globular cluster metallicity scale is assumed to be overestimated by a linear shift of $sim 0.11$ dex and $sim 0.36$ dex respectively. This inference based on RGBB star counts goes in the opposite direction to the increase in metallicities of ${Delta}$[M/H]$approx$0.20 dex that would be required to fix the offset between predicted and observed RGBB luminosities. This comparison is a constraint on deep mixing models of stellar interiors, which predict decreased rather than increased RGBB star counts. We tabulate the predictions for RGBB star counts as a function of [Fe/H], [$alpha$/Fe], CNONa, initial helium abundance, and age. Though our study suggests a small zero-point calibration issue, RGBB star counts should nonetheless be an actionable parameter with which to constrain stellar populations in the differential sense. The most significant outliers are toward the clusters NGC 5025 (M53), NGC 6723, and NGC 7089 (M2), each of which shows a $sim 2 sigma$ deficit in their RGBB star counts.
We present the discovery and characterisation of the post-common-envelope central star system in the planetary nebula PN G283.7$-$05.1. Deep images taken as part of the POPIPlaN survey indicate that the nebula may possess a bipolar morphology similar to other post-common-envelope planetary nebulae. Simultaneous light and radial velocity curve modelling reveals the newly discovered binary system to comprise a highly-irradiated, M-type main-sequence star in a 5.9 hour orbit with a hot pre-white-dwarf. The nebular progenitor is found to have a particularly low mass of around 0.4 M$_odot$, making PN G283.7$-$05.1 one of only a handful of candidate planetary nebulae to be the product of a common-envelope event while still on the red giant branch. Beyond its low mass, the model temperature, surface gravity and luminosity are all found to be consistent with the observed stellar and nebular spectra through comparison with model atmospheres and photoionisation modelling. However, the high temperature (T$_mathrm{eff}sim$95kK) and high luminosity of the central star of the nebula are not consistent with post-RGB evolutionary tracks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا