No Arabic abstract
Common-envelope phases are decisive for the evolution of many binary systems. Of particular interest are cases with asymptotic giant branch (AGB) primary stars, because they are thought to be progenitors of various astrophysical transients. In three-dimensional hydrodynamic simulations with the moving-mesh code AREPO, we study the common-envelope evolution of a $1.0,M_{odot}$ early-AGB star with companions of different masses. Although the stellar envelope of the AGB star is less tightly bound than that of a red giant, we find that the release of orbital energy of the core binary is insufficient to eject more than about twenty percent of the envelope mass. Ionization energy released in the expanding envelope, however, can lead to complete envelope ejection. Because recombination proceeds largely at high optical depths in our simulations, it is likely that this effect indeed plays a significant role in the considered systems. The efficiency of mass loss and the final orbital separation of the core binary system depend on the mass ratio between the companion and the primary star. Our results suggest a linear relation between the ratio of final to initial orbital separation and this parameter.
One of the major puzzles in the study of stellar evolution is the formation process of bipolar and multi-polar planetary nebulae. There is growing consensus that collimated jets create cavities with dense walls in the slowly-expanding (10--20 ~km~s$^{-1}$) envelope ejected in previous evolutionary phases, leading to the observed morphologies. However, the launching of the jet and the way it interacts with the circumstellar material to create such asymmetric morphologies have remained poorly known. Here we present for the first time CO emission from the asymptotic giant branch star W43A that traces the whole stream of a jet, from the vicinity of its driving stellar system out to the regions where it shapes the circumstellar envelope. We found that the jet has a launch velocity of 175~km~s$^{-1}$ and decelerates to a velocity of 130~km~s$^{-1}$ as it interacts with circumstellar material. The continuum emission reveals a bipolar shell with a compact bright dot in the centre that pinpoints the location of the driving source of the jet. The kinematical ages of the jet and the bipolar shell are equal, $tau$$sim$60~years, indicating that they were created simultaneously, probably by a common underlying mechanism, and in an extremely short time. These results provide key initial conditions for the theoretical models that aim to explain the formation of bipolar morphologies in the circumstellar envelopes of low and intermediate mass stars.
Observation of CO emission around asymptotic giant branch (AGB) stars is the primary method to determine gas mass-loss rates. While radiative transfer models have shown that molecular levels of CO can become mildly inverted, causing maser emission, CO maser emission has yet to be confirmed observationally. High-resolution observations of the CO emission around AGB stars now have the brightness temperature sensitivity to detect possible weak CO maser emission. We used high angular resolution observations taken with the Atacama Large Millimeter/submillimeter Array (ALMA) to observe the small-scale structure of CO $J=3-2$ emission around the oxygen-rich AGB star W Hya. We find CO maser emission amplifying the stellar continuum with an optical depth $tauapprox-0.55$. The maser predominantly amplifies the limb of the star because CO $J=3-2$ absorption from the extended stellar atmosphere is strongest towards the centre of the star. The CO maser velocity corresponds to a previously observed variable component of high-frequency H$_2$O masers and with the OH maser that was identified as the amplified stellar image. This implies that the maser originates beyond the acceleration region and constrains the velocity profile since we find the population inversion primarily in the inner circumstellar envelope. We find that inversion can be explained by the radiation field at 4.6 $mu$m and that the existence of CO maser emission is consistent with the estimated mass-loss rates for W Hya. However, the pumping mechanism requires a complex interplay between absorption and emission lines in the extended atmosphere. Excess from dust in the circumstellar envelope of W Hya is not sufficient to contribute significantly to the required radiation field at 4.6 $mu$m. The interplay between molecular lines that cause the pumping can be constrained by future multi-level CO observations.
High resolution observations of the extended atmospheres of asymptotic giant branch (AGB) stars can now directly confront the theories that describe stellar mass loss. Using Atacama Large Millimeter/submillimeter Array (ALMA) high angular resolution ($30times42$~mas) observations we have, for the first time, resolved stellar rotation of an AGB star, R~Dor. We measure an angular rotation velocity of $omega_Rsin{i}=(3.5pm0.3)times10^{-9}$~rad~s$^{-1}$ which indicates a rotational velocity of $|upsilon_{rm rot}sin{i}|=1.0pm0.1$~km~s$^{-1}$ at the stellar surface ($R_*=31.2$~mas at $214$~GHz). The rotation axis projected on the plane of the sky has a position angle $Phi=7pm6^circ$. We find that the rotation of R Dor is two orders of magnitude faster than expected for a solitary AGB star that will have lost most of its angular momentum. Its rotational velocity is consistent with angular momentum transfer from a close companion. As a companion has not been directly detected we thus suggest R~Dor has a low-mass, close-in, companion. The rotational velocity approaches the critical velocity, set by the local sound speed in the extended envelope, and is thus expected to affect the mass loss characteristics of R~Dor.
Our current understanding of the chemistry and mass-loss processes in solar-like stars at the end of their evolution depends critically on the description of convection, pulsations and shocks in the extended stellar atmosphere. Three-dimensional hydrodynamical stellar atmosphere models provide observational predictions, but so far the resolution to constrain the complex temperature and velocity structures seen in the models has been lacking. Here we present submillimeter continuum and line observations that resolve the atmosphere of the asymptotic giant branch star W Hya. We show that hot gas with chromospheric characteristics exists around the star. Its filling factor is shown to be small. The existence of such gas requires shocks with a cooling time larger than commonly assumed. A shocked hot layer will be an important ingredient in the models of stellar convection, pulsation and chemistry that underlie our current understanding of the late stages of stellar evolution.
There is now strong evidence that some stars have been born with He mass fractions as high as $Y approx 0.40$ (e.g., in $omega$ Centauri). However, the advanced evolution, chemical yields, and final fates of He-rich stars are largely unexplored. We investigate the consequences of He-enhancement on the evolution and nucleosynthesis of intermediate-mass asymptotic giant branch (AGB) models of 3, 4, 5, and 6 M$_odot$ with a metallicity of $Z = 0.0006$ ([Fe/H] $approx -1.4$). We compare models with He-enhanced compositions ($Y=0.30, 0.35, 0.40$) to those with primordial He ($Y=0.24$). We find that the minimum initial mass for C burning and super-AGB stars with CO(Ne) or ONe cores decreases from above our highest mass of 6 M$_odot$ to $sim$ 4-5 M$_odot$ with $Y=0.40$. We also model the production of trans-Fe elements via the slow neutron-capture process (s-process). He-enhancement substantially reduces the third dredge-up efficiency and the stellar yields of s-process elements (e.g., 90% less Ba for 6 M$_odot$, $Y=0.40$). An exception occurs for 3 M$_odot$, where the near-doubling in the number of thermal pulses with $Y=0.40$ leads to $sim$ 50% higher yields of Ba-peak elements and Pb if the $^{13}$C neutron source is included. However, the thinner intershell and increased temperatures at the base of the convective envelope with $Y=0.40$ probably inhibit the $^{13}$C neutron source at this mass. Future chemical evolution models with our yields might explain the evolution of s-process elements among He-rich stars in $omega$ Centauri.