No Arabic abstract
Theory of Mind is commonly defined as the ability to attribute mental states (e.g., beliefs, goals) to oneself, and to others. A large body of previous work - from the social sciences to artificial intelligence - has observed that Theory of Mind capabilities are central to providing an explanation to another agent or when explaining that agents behaviour. In this paper, we build and expand upon previous work by providing an account of explanation in terms of the beliefs of agents and the mechanism by which agents revise their beliefs given possible explanations. We further identify a set of desiderata for explanations that utilize Theory of Mind. These desiderata inform our belief-based account of explanation.
Human collaborators can effectively communicate with their partners to finish a common task by inferring each others mental states (e.g., goals, beliefs, and desires). Such mind-aware communication minimizes the discrepancy among collaborators mental states, and is crucial to the success in human ad-hoc teaming. We believe that robots collaborating with human users should demonstrate similar pedagogic behavior. Thus, in this paper, we propose a novel explainable AI (XAI) framework for achieving human-like communication in human-robot collaborations, where the robot builds a hierarchical mind model of the human user and generates explanations of its own mind as a form of communications based on its online Bayesian inference of the users mental state. To evaluate our framework, we conduct a user study on a real-time human-robot cooking task. Experimental results show that the generated explanations of our approach significantly improves the collaboration performance and user perception of the robot. Code and video demos are available on our project website: https://xfgao.github.io/xCookingWeb/.
When inferring the goals that others are trying to achieve, people intuitively understand that others might make mistakes along the way. This is crucial for activities such as teaching, offering assistance, and deciding between blame or forgiveness. However, Bayesian models of theory of mind have generally not accounted for these mistakes, instead modeling agents as mostly optimal in achieving their goals. As a result, they are unable to explain phenomena like locking oneself out of ones house, or losing a game of chess. Here, we extend the Bayesian Theory of Mind framework to model boundedly rational agents who may have mistaken goals, plans, and actions. We formalize this by modeling agents as probabilistic programs, where goals may be confused with semantically similar states, plans may be misguided due to resource-bounded planning, and actions may be unintended due to execution errors. We present experiments eliciting human goal inferences in two domains: (i) a gridworld puzzle with gems locked behind doors, and (ii) a block-stacking domain. Our model better explains human inferences than alternatives, while generalizing across domains. These findings indicate the importance of modeling others as bounded agents, in order to account for the full richness of human intuitive psychology.
Pragmatics studies how context can contribute to language meanings [1]. In human communication, language is never interpreted out of context, and sentences can usually convey more information than their literal meanings [2]. However, this mechanism is missing in most multi-agent systems [3, 4, 5, 6], restricting the communication efficiency and the capability of human-agent interaction. In this paper, we propose an algorithm, using which agents can spontaneously learn the ability to read between lines without any explicit hand-designed rules. We integrate the theory of mind (ToM) [7, 8] in a cooperative multi-agent pedagogical situation and propose an adaptive reinforcement learning (RL) algorithm to develop a communication protocol. ToM is a profound cognitive science concept, claiming that people regularly reason about others mental states, including beliefs, goals, and intentions, to obtain performance advantage in competition, cooperation or coalition. With this ability, agents consider language as not only messages but also rational acts reflecting others hidden states. Our experiments demonstrate the advantage of pragmatic protocols over non-pragmatic protocols. We also show the teaching complexity following the pragmatic protocol empirically approximates to recursive teaching dimension (RTD).
We propose CX-ToM, short for counterfactual explanations with theory-of mind, a new explainable AI (XAI) framework for explaining decisions made by a deep convolutional neural network (CNN). In contrast to the current methods in XAI that generate explanations as a single shot response, we pose explanation as an iterative communication process, i.e. dialog, between the machine and human user. More concretely, our CX-ToM framework generates sequence of explanations in a dialog by mediating the differences between the minds of machine and human user. To do this, we use Theory of Mind (ToM) which helps us in explicitly modeling humans intention, machines mind as inferred by the human as well as humans mind as inferred by the machine. Moreover, most state-of-the-art XAI frameworks provide attention (or heat map) based explanations. In our work, we show that these attention based explanations are not sufficient for increasing human trust in the underlying CNN model. In CX-ToM, we instead use counterfactual explanations called fault-lines which we define as follows: given an input image I for which a CNN classification model M predicts class c_pred, a fault-line identifies the minimal semantic-level features (e.g., stripes on zebra, pointed ears of dog), referred to as explainable concepts, that need to be added to or deleted from I in order to alter the classification category of I by M to another specified class c_alt. We argue that, due to the iterative, conceptual and counterfactual nature of CX-ToM explanations, our framework is practical and more natural for both expert and non-expert users to understand the internal workings of complex deep learning models. Extensive quantitative and qualitative experiments verify our hypotheses, demonstrating that our CX-ToM significantly outperforms the state-of-the-art explainable AI models.
Motivated by the application problem of sensor fusion the author introduced the concept of graded set. It is reasoned that in classification problem arising in an information system (represented by information table), a novel set called Granular set naturally arises. It is realized that in any hierarchical classification problem, Granular set naturally arises. Also when the target set of objects forms a graded set the lower and upper approximations of target sets form a graded set. This generalizes the concept of rough set. It is hoped that a detailed theory of granular/ graded sets finds several applications.