No Arabic abstract
Human collaborators can effectively communicate with their partners to finish a common task by inferring each others mental states (e.g., goals, beliefs, and desires). Such mind-aware communication minimizes the discrepancy among collaborators mental states, and is crucial to the success in human ad-hoc teaming. We believe that robots collaborating with human users should demonstrate similar pedagogic behavior. Thus, in this paper, we propose a novel explainable AI (XAI) framework for achieving human-like communication in human-robot collaborations, where the robot builds a hierarchical mind model of the human user and generates explanations of its own mind as a form of communications based on its online Bayesian inference of the users mental state. To evaluate our framework, we conduct a user study on a real-time human-robot cooking task. Experimental results show that the generated explanations of our approach significantly improves the collaboration performance and user perception of the robot. Code and video demos are available on our project website: https://xfgao.github.io/xCookingWeb/.
Generating explanation to explain its behavior is an essential capability for a robotic teammate. Explanations help human partners better understand the situation and maintain trust of their teammates. Prior work on robot generating explanations focuses on providing the reasoning behind its decision making. These approaches, however, fail to heed the cognitive requirement of understanding an explanation. In other words, while they provide the right explanations from the explainers perspective, the explainee part of the equation is ignored. In this work, we address an important aspect along this direction that contributes to a better understanding of a given explanation, which we refer to as the progressiveness of explanations. A progressive explanation improves understanding by limiting the cognitive effort required at each step of making the explanation. As a result, such explanations are expected to be smoother and hence easier to understand. A general formulation of progressive explanation is presented. Algorithms are provided based on several alternative quantifications of cognitive effort as an explanation is being made, which are evaluated in a standard planning competition domain.
As AI becomes an integral part of our lives, the development of explainable AI, embodied in the decision-making process of an AI or robotic agent, becomes imperative. For a robotic teammate, the ability to generate explanations to justify its behavior is one of the key requirements of explainable agency. Prior work on explanation generation has been focused on supporting the rationale behind the robots decision or behavior. These approaches, however, fail to consider the mental demand for understanding the received explanation. In other words, the human teammate is expected to understand an explanation no matter how much information is presented. In this work, we argue that explanations, especially those of a complex nature, should be made in an online fashion during the execution, which helps spread out the information to be explained and thus reduce the mental workload of humans in highly cognitive demanding tasks. However, a challenge here is that the different parts of an explanation may be dependent on each other, which must be taken into account when generating online explanations. To this end, a general formulation of online explanation generation is presented with three variations satisfying different online properties. The new explanation generation methods are based on a model reconciliation setting introduced in our prior work. We evaluated our methods both with human subjects in a simulated rover domain, using NASA Task Load Index (TLX), and synthetically with ten different problems across two standard IPC domains. Results strongly suggest that our methods generate explanations that are perceived as less cognitively demanding and much preferred over the baselines and are computationally efficient.
Providing explanations is considered an imperative ability for an AI agent in a human-robot teaming framework. The right explanation provides the rationale behind an AI agents decision-making. However, to maintain the human teammates cognitive demand to comprehend the provided explanations, prior works have focused on providing explanations in a specific order or intertwining the explanation generation with plan execution. Moreover, these approaches do not consider the degree of details required to share throughout the provided explanations. In this work, we argue that the agent-generated explanations, especially the complex ones, should be abstracted to be aligned with the level of details the human teammate desires to maintain the recipients cognitive load. Therefore, learning a hierarchical explanations model is a challenging task. Moreover, the agent needs to follow a consistent high-level policy to transfer the learned teammate preferences to a new scenario while lower-level detailed plans are different. Our evaluation confirmed the process of understanding an explanation, especially a complex and detailed explanation, is hierarchical. The human preference that reflected this aspect corresponded exactly to creating and employing abstraction for knowledge assimilation hidden deeper in our cognitive process. We showed that hierarchical explanations achieved better task performance and behavior interpretability while reduced cognitive load. These results shed light on designing explainable agents utilizing reinforcement learning and planning across various domains.
This paper presents a user-centered physical interface for collaborative mobile manipulators in industrial manufacturing and logistics applications. The proposed work builds on our earlier MOCA-MAN interface, through which a mobile manipulator could be physically coupled to the operators to assist them in performing daily activities. The new interface instead presents the following additions: i) A simplistic, industrial-like design that allows the worker to couple/decouple easily and to operate mobile manipulators locally; ii) Enhanced loco-manipulation capabilities that do not compromise the worker mobility. Besides, an experimental evaluation with six human subjects is carried out to analyze the enhanced locomotion and flexibility of the proposed interface in terms of mobility constraint, usability, and physical load reduction.
Prior work on generating explanations in a planning and decision-making context has focused on providing the rationale behind an AI agents decision making. While these methods provide the right explanations from the explainers perspective, they fail to heed the cognitive requirement of understanding an explanation from the explainees (the humans) perspective. In this work, we set out to address this issue by first considering the influence of information order in an explanation, or the progressiveness of explanations. Intuitively, progression builds later concepts on previous ones and is known to contribute to better learning. In this work, we aim to investigate similar effects during explanation generation when an explanation is broken into multiple parts that are communicated sequentially. The challenge here lies in modeling the humans preferences for information order in receiving such explanations to assist understanding. Given this sequential process, a formulation based on goal-based MDP for generating progressive explanations is presented. The reward function of this MDP is learned via inverse reinforcement learning based on explanations that are retrieved via human subject studies. We first evaluated our approach on a scavenger-hunt domain to demonstrate its effectively in capturing the humans preferences. Upon analyzing the results, it revealed something more fundamental: the preferences arise strongly from both domain dependent and independence features. The correlation with domain independent features pushed us to verify this result further in an escape room domain. Results confirmed our hypothesis that the process of understanding an explanation was a dynamic process. The human preference that reflected this aspect corresponded exactly to the progression for knowledge assimilation hidden deeper in our cognitive process.