No Arabic abstract
The automatic detection of hypernymy relationships represents a challenging problem in NLP. The successful application of state-of-the-art supervised approaches using distributed representations has generally been impeded by the limited availability of high quality training data. We have developed two novel data augmentation techniques which generate new training examples from existing ones. First, we combine the linguistic principles of hypernym transitivity and intersective modifier-noun composition to generate additional pairs of vectors, such as small dog - dog or small dog - animal, for which a hypernymy relationship can be assumed. Second, we use generative adversarial networks (GANs) to generate pairs of vectors for which the hypernymy relation can also be assumed. We furthermore present two complementary strategies for extending an existing dataset by leveraging linguistic resources such as WordNet. Using an evaluation across 3 different datasets for hypernymy detection and 2 different vector spaces, we demonstrate that both of the proposed automatic data augmentation and dataset extension strategies substantially improve classifier performance.
Detecting offensive language on social media is an important task. The ICWSM-2020 Data Challenge Task 2 is aimed at identifying offensive content using a crowd-sourced dataset containing 100k labelled tweets. The dataset, however, suffers from class imbalance, where certain labels are extremely rare compared with other classes (e.g, the hateful class is only 5% of the data). In this work, we present Dager (Data Augmenter), a generation-based data augmentation method, that improves the performance of classification on imbalanced and low-resource data such as the offensive language dataset. Dager extracts the lexical features of a given class, and uses these features to guide the generation of a conditional generator built on GPT-2. The generated text can then be added to the training set as augmentation data. We show that applying Dager can increase the F1 score of the data challenge by 11% when we use 1% of the whole dataset for training (using BERT for classification); moreover, the generated data also preserves the original labels very well. We test Dager on four different classifiers (BERT, CNN, Bi-LSTM with attention, and Transformer), observing universal improvement on the detection, indicating our method is effective and classifier-agnostic.
Existing methods of hypernymy detection mainly rely on statistics over a big corpus, either mining some co-occurring patterns like animals such as cats or embedding words of interest into context-aware vectors. These approaches are therefore limited by the availability of a large enough corpus that can cover all terms of interest and provide sufficient contextual information to represent their meaning. In this work, we propose a new paradigm, HyperDef, for hypernymy detection -- expressing word meaning by encoding word definitions, along with context driven representation. This has two main benefits: (i) Definitional sentences express (sense-specific) corpus-independent meanings of words, hence definition-driven approaches enable strong generalization -- once trained, the model is expected to work well in open-domain testbeds; (ii) Global context from a large corpus and definitions provide complementary information for words. Consequently, our model, HyperDef, once trained on task-agnostic data, gets state-of-the-art results in multiple benchmarks
Unsupervised Data Augmentation (UDA) is a semi-supervised technique that applies a consistency loss to penalize differences between a models predictions on (a) observed (unlabeled) examples; and (b) corresponding noised examples produced via data augmentation. While UDA has gained popularity for text classification, open questions linger over which design decisions are necessary and over how to extend the method to sequence labeling tasks. This method has recently gained traction for text classification. In this paper, we re-examine UDA and demonstrate its efficacy on several sequential tasks. Our main contribution is an empirical study of UDA to establish which components of the algorithm confer benefits in NLP. Notably, although prior work has emphasized the use of clever augmentation techniques including back-translation, we find that enforcing consistency between predictions assigned to observed and randomly substituted words often yields comparable (or greater) benefits compared to these complex perturbation models. Furthermore, we find that applying its consistency loss affords meaningful gains without any unlabeled data at all, i.e., in a standard supervised setting. In short: UDA need not be unsupervised, and does not require complex data augmentation to be effective.
We propose a novel data augmentation for labeled sentences called contextual augmentation. We assume an invariance that sentences are natural even if the words in the sentences are replaced with other words with paradigmatic relations. We stochastically replace words with other words that are predicted by a bi-directional language model at the word positions. Words predicted according to a context are numerous but appropriate for the augmentation of the original words. Furthermore, we retrofit a language model with a label-conditional architecture, which allows the model to augment sentences without breaking the label-compatibility. Through the experiments for six various different text classification tasks, we demonstrate that the proposed method improves classifiers based on the convolutional or recurrent neural networks.
Despite their empirical success, neural networks still have difficulty capturing compositional aspects of natural language. This work proposes a simple data augmentation approach to encourage compositional behavior in neural models for sequence-to-sequence problems. Our approach, SeqMix, creates new synthetic examples by softly combining input/output sequences from the training set. We connect this approach to existing techniques such as SwitchOut and word dropout, and show that these techniques are all approximating variants of a single objective. SeqMix consistently yields approximately 1.0 BLEU improvement on five different translation datasets over strong Transformer baselines. On tasks that require strong compositional generalization such as SCAN and semantic parsing, SeqMix also offers further improvements.