Do you want to publish a course? Click here

Corrections to Yukawa couplings from higher dimensional operators in a natural SUSY $mathsf{SO(10)}$ and HL-LHC implications

89   0   0.0 ( 0 )
 Added by Amin Aboubrahim
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We consider a class of unified models based on the gauge group $mathsf{SO(10)}$ which with appropriate choice of Higgs representations generate in a natural way a pair of light Higgs doublets needed to accomplish electroweak symmetry breaking. In this class of models higher dimensional operators of the form matter-matter-Higgs-Higgs in the superpotential after spontaneous breaking of the GUT symmetry generate contributions to Yukawa couplings which are comparable to the ones from cubic interactions. Specifically we consider an $mathsf{SO(10)}$ model with a sector consisting of $mathsf{126+overline{126} + 210}$ of heavy Higgs which breaks the GUT symmetry down to the standard model gauge group and a sector consisting of $2times mathsf{10+120}$ of light Higgs fields. In this model we compute the corrections from the quartic interactions to the Yukawa couplings for the top and the bottom quarks and for the tau lepton. It is then shown that inclusion of these corrections to the GUT scale Yukawas allows for consistency of the top, bottom and tau masses with experiment for low $tanbeta$ with a value as low as $tanbeta$ of 5$-$10. We compute the sparticle spectrum for a set of benchmarks and find that satisfaction of the relic density is achieved via a compressed spectrum and coannihilation and three sets of coannihilations appear: chargino-neutralino, stop-neutralino and stau-neutralino. We investigate the chargino-neutralino coannihilation in detail for the possibility of observation of the light chargino at the high luminosity LHC (HL-LHC) and at the high energy LHC (HE-LHC) which is a possible future 27 TeV hadron collider. It is shown that all benchmark models but one can be discovered at HL-LHC and all would be discoverable at HE-LHC. The ones discoverable at both machines require a much shorter time scale and a lower integrated luminosity at HE-LHC.



rate research

Read More

113 - J. Sayre , S. Wiesenfeldt 2006
SO(10) GUT models with only small Higgs fields use higher-dimensional operators to generate realistic fermion mass matrices. In particular, a Higgs field in the spinor representation, 16^d_H, acquires a weak scale vev. We include the weak vev of the corresponding field bar{16}^u_H and investigate the effect on two successful models, one by Albright and Barr (AB) and another by Babu, Pati and Wilczek (BPW). We find that the BPW model is a particular case within a class of models with identical fermion masses and mixings. In contrast, we expect corrections to the parameters of AB-type models.
Renormalizable SO(10) grand unified theories (GUTs), extended by $O(N_g)_F$ family gauge symmetry, generate minimal supersymmetric Standard Model flavour structure dynamically via vacuum expectation values of Yukawon Higgs multiplets. For concrete illustration and calculability, we work with the fully realistic minimal supersymmetric GUTs based on the $bf{210 oplus {overline{126}}oplus 126} $ GUT Higgs system - which were already parameter counting minimal relative to other realistic models. $SO(10)$ fermion Higgs channels $bf{{overline{126}},10}$($mathbf{120}$) extend to symmetric(antisymmetric) representations of $O(N_g)_F$, while $mathbf{210,126}$ are symmetric. $N_g=3$ dynamical Yukawa generation reduces the matter fermion Yukawas from 15 to 3 (21 to 5) without (with) the $bf{120}$ Higgs. Yukawon GUTs are thus ultraminimal in parameter counting terms. Consistent symmetry breaking is ensured by a hidden sector Bajc-Melfo(BM) superpotential with a pair of symmetric $O(N_g)$ multiplets $phi,S $, of which the latters singlet part $S_s$ breaks supersymmetry and the traceless part $hat S $ furnishes flat directions to cancel the $O(N_g)$ D-term contributions of the visible sector. Novel dark matter candidates linked to flavour symmetry arise from both the BM sector and GUT sector minimal supersymmetric Standard Model singlet pseudo-Goldstones. These relics may be viable light($< 50 $ GeV) cold dark matter as reported by DAMA/LIBRA. In contrast to the new minimal supersymmetric SO(10) grand unified theory (NMSGUT) even sterile neutrinos can appear in certain branches of the flavour symmetry breaking without the tuning of couplings.
We investigate the Yukawa coupling unification for the third generation in a class of $mathsf{SO(10)}$ unified models which are consistent with the 4.2 $sigma$ deviation from the standard model of the muon $g-2$ seen by the Fermilab experiment E989. A recent analysis in supergravity grand unified models shows that such an effect can arise from supersymmetric loops correction. Using a neural network, we further analyze regions of the parameter space where Yukawa coupling unification consistent with the Fermilab result can appear. In the analysis we take into account the contributions to Yukawas from the cubic and the quartic interactions. We test the model at the high luminosity and high energy LHC and estimate the integrated luminosities needed to discover sparticles predicted by the model.
The Standard Model Neutrino Effective Field Theory (SMNEFT) is the Standard Model Effective Field Theory (SMEFT) augmented with right-handed neutrinos. Building on our previous work, arXiv:2010.12109, we calculate the Yukawa coupling contributions to the one-loop anomalous dimension matrix for the 11 dimension-six four-fermion SMNEFT operators. We also present the new contributions to the anomalous dimension matrix for the 14 four-fermion SMEFT operators that mix with the SMNEFT operators through the Yukawa couplings of the right-handed neutrinos.
We report on the extrapolation of scalar mass parameters in the lepton sector to reconstruct SO(10) scenarios close to the unification scale. The method is demonstrated for an example in which SO(10) is broken directly to the Standard Model, based on the expected precision from coherent LHC and ILC collider analyses. In addition to the fundamental scalar mass parameters at the unification scale, the mass of the heaviest right-handed neutrino can be estimated in the seesaw scenario.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا