Do you want to publish a course? Click here

Anomalous dimensions from Yukawa couplings in SMNEFT: four-fermion operators

85   0   0.0 ( 0 )
 Added by Danny Marfatia
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

The Standard Model Neutrino Effective Field Theory (SMNEFT) is the Standard Model Effective Field Theory (SMEFT) augmented with right-handed neutrinos. Building on our previous work, arXiv:2010.12109, we calculate the Yukawa coupling contributions to the one-loop anomalous dimension matrix for the 11 dimension-six four-fermion SMNEFT operators. We also present the new contributions to the anomalous dimension matrix for the 14 four-fermion SMEFT operators that mix with the SMNEFT operators through the Yukawa couplings of the right-handed neutrinos.



rate research

Read More

Very recently, the CMS collaboration has reported a search for the production for a Standard Model (SM) Higgs boson in association with a top quark pair ($t bar{t} H$) at the LHC Run-2 and a best fit $t bar{t} H$ yield of $1.5 pm 0.5$ times the SM prediction with an observed significance of $3.3 sigma$. We study a possibility of whether or not this observed deviation can be explained by anomalous Higgs Yukawa couplings with the top and the bottom quarks, along with the LHC Run-1 data for the Higgs boson properties. We find that anomalous top and bottom Yukawa couplings with about $0-20$% and $10-40$% reductions from their SM values, respectively, can simultaneously fit the recent CMS result and the LHC Run-1 data.
Standard Model Neutrino Effective Field Theory (SMNEFT) is an effective theory with Standard Model (SM) gauge-invariant operators constructed only from SM and right-handed neutrino fields. For the full set of dimension-six SMNEFT operators, we present the gauge coupling terms of the one-loop anomalous dimension matrix for renormalization group evolution (RGE) of the Wilson coefficients between a new physics scale and the electroweak scale. We find that the SMNEFT operators can be divided into five subsets which are closed under RGE. Our results apply for both Dirac and Majorana neutrinos. We also discuss the operator mixing pattern numerically and comment on some interesting phenomenological implications.
201 - G.K. Leontaris , G.G. Ross 2010
The calculation of Yukawa couplings in F-theory GUTs is developed. The method is applied to the top and bottom Yukawa couplings in an SU(5) model of fermion masses based on family symmetries coming from the SU(5)_perp factor in the underlying E(8) theory. The remaining Yukawa couplings involving the light quark generations are determined by the Froggatt Nielsen non-renormalisable terms generated by heavy messenger states. We extend the calculation of Yukawa couplings to include massive states and estimate the full up and down quark mass matrices in the SU(5) model. We discuss the new features of the resulting structure compared to what is usually assumed for Abelian family symmetry models and show how the model can give a realistic quark mass matrix structure. We extend the analysis to the neutrino sector masses and mixing where we find that tri-bi-maximal mixing is readily accommodated. Finally we discuss mechanisms for splitting the degeneracy between the charged leptons and the down quarks and the doublet triplet splitting in the Higgs sector.
In this work, we calculate leading-order anomalous dimension matrices for dimension-6 four-quark operators which appear in the operator product expansion of flavour non-diagonal and diagonal vector and axial-vector two-point correlation functions. The infrared renormalon structure corresponding to four-quark operators is reviewed and it is investigated how the eigenvalues of the anomalous dimension matrices influence the singular behaviour of the $u=3$ infrared renormalon pole. It is found that compared to the large-$beta_0$ approximation where at most quadratic poles are present, in full QCD at $N_f=3$ the most singular pole is more than cubic with an exponent $kappaapprox 3.2$.
In some extensions of the Standard Model, Yukawa couplings of the physical Higgs boson can be deviated from those in the Standard Model. We study a possibility whether or not such anomalous Yukawa couplings are consistent with the LHC Run 1 data. It is found that sizable deviations of top and bottom (and tau) Yukawa couplings from the Standard Model predictions can nicely fit the data. New physics beyond the Standard Model can be revealed through more precise measurements of such anomalous Yukawa couplings at the LHC Run 2 in the near future. We also discuss a simple setup which can leads to anomalous Yukawa couplings.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا