Do you want to publish a course? Click here

Hydrodynamic limits of interacting particle systems on crystal lattices in periodic realizations

79   0   0.0 ( 0 )
 Added by Zehao Guan
 Publication date 2020
  fields
and research's language is English
 Authors Zehao Guan




Ask ChatGPT about the research

We study the hydrodynamic limits of the simple exclusion processes and the zero range processes on crystal lattices. For a periodic realization of crystal lattice, we derive the hydrodynamic limit for the exclusion processes and the zero range processes, which depends on both the structure of crystal lattice and the periodic realization. Even through the crystal lattices have inhomogeneous local structure, for all periodic realizations, we apply the entropy method to derive the hydrodynamic limits. Also, we discuss how the limit equation depends on the choices of the realizations.



rate research

Read More

We consider the hydrodynamic scaling behavior of the mass density with respect to a general class of mass conservative interacting particle systems on ${mathbb Z}^n$, where the jump rates are asymmetric and long-range of order $|x|^{-(n+alpha)}$ for a particle displacement of order $|x|$. Two types of evolution equations are identified depending on the strength of the long-range asymmetry. When $0<alpha<1$, we find a new integro-partial differential hydrodynamic equation, in an anomalous space-time scale. On the other hand, when $alphageq 1$, we derive a Burgers hydrodynamic equation, as in the finite-range setting, in Euler scale.
In this paper we consider three classes of interacting particle systems on $mathbb Z$: independent random walks, the exclusion process, and the inclusion process. We allow particles to switch their jump rate (the rate identifies the type of particle) between $1$ (fast particles) and $epsilonin[0,1]$ (slow particles). The switch between the two jump rates happens at rate $gammain(0,infty)$. In the exclusion process, the interaction is such that each site can be occupied by at most one particle of each type. In the inclusion process, the interaction takes places between particles of the same type at different sites and between particles of different type at the same site. We derive the macroscopic limit equations for the three systems, obtained after scaling space by $N^{-1}$, time by $N^2$, the switching rate by $N^{-2}$, and letting $Ntoinfty$. The limit equations for the macroscopic densities associated to the fast and slow particles is the well-studied double diffusivity model. This system of reaction-diffusion equations was introduced to model polycrystal diffusion and dislocation pipe diffusion, with the goal to overcome the limitations imposed by Ficks law. In order to investigate the microscopic out-of-equilibrium properties, we analyse the system on $[N]={1,ldots,N}$, adding boundary reservoirs at sites $1$ and $N$ of fast and slow particles, respectively. Inside $[N]$ particles move as before, but now particles are injected and absorbed at sites $1$ and $N$ with prescribed rates that depend on the particle type. We compute the steady-state density profile and the steady-state current. It turns out that uphill diffusion is possible, i.e., the total flow can be in the direction of increasing total density. This phenomenon, which cannot occur in a single-type particle system, is a violation of Ficks law made possible by the switching between types.
162 - C. Bahadoran 2008
We prove almost sure Euler hydrodynamics for a large class of attractive particle systems on $Z$ starting from an arbitrary initial profile. We generalize earlier works by Seppalainen (1999) and Andjel et al. (2004). Our constructive approach requires new ideas since the subadditive ergodic theorem (central to previous works) is no longer effective in our setting.
There are a number of situations in which rescaled interacting particle systems have been shown to converge to a reaction diffusion equation (RDE) with a bistable reaction term. These RDEs have traveling wave solutions. When the speed of the wave is nonzero, block constructions have been used to prove the existence or nonexistence of nontrivial stationary distributions. Here, we follow the approach in a paper by Etheridge, Freeman, and Pennington to show that in a wide variety of examples when the RDE limit has a bistable reaction term and traveling waves have speed 0, one can run time faster and further rescale space to obtain convergence to motion by mean curvature. This opens up the possibility of proving that the sexual reproduction model with fast stirring has a discontinuous phase transition, and that in Region 2 of the phase diagram for the nonlinear voter model studied by Molofsky et al there were two nontrivial stationary distributions.
60 - Shi Jin , Lei Li 2020
The Random Batch Method proposed in our previous work [Jin et al., J. Comput. Phys., 400(1), 2020] is not only a numerical method for interacting particle systems and its mean-field limit, but also can be viewed as a model of particle system in which particles interact, at discrete time, with randomly selected mini-batch of particles. In this paper we investigate the mean-field limit of this model as the number of particles $N to infty$. Unlike the classical mean field limit for interacting particle systems where the law of large numbers plays the role and the chaos is propagated to later times, the mean field limit now does not rely on the law of large numbers and chaos is imposed at every discrete time. Despite this, we will not only justify this mean-field limit (discrete in time) but will also show that the limit, as the discrete time interval $tau to 0$, approaches to the solution of a nonlinear Fokker-Planck equation arising as the mean-field limit of the original interacting particle system in Wasserstein distance.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا