Do you want to publish a course? Click here

Strong hydrodynamic limit for attractive particle systems on Z

160   0   0.0 ( 0 )
 Added by Herve Guiol
 Publication date 2008
  fields Physics
and research's language is English
 Authors C. Bahadoran




Ask ChatGPT about the research

We prove almost sure Euler hydrodynamics for a large class of attractive particle systems on $Z$ starting from an arbitrary initial profile. We generalize earlier works by Seppalainen (1999) and Andjel et al. (2004). Our constructive approach requires new ideas since the subadditive ergodic theorem (central to previous works) is no longer effective in our setting.



rate research

Read More

127 - Lu Xu 2021
We consider the asymmetric simple exclusion process (ASEP) on the one-dimensional lattice. The particles can be created/annihilated at the boundaries with time-dependent rate. These boundary dynamics are properly accelerated. We prove the hydrodynamic limit of the particle density profile, under the hyperbolic space-time rescaling, evolves with the entropy solution to Burgers equation with Dirichlet boundary conditions. The boundary conditions are characterised by boundary entropy flux pair.
We give the ``quenched scaling limit of Bouchauds trap model in ${dge 2}$. This scaling limit is the fractional-kinetics process, that is the time change of a $d$-dimensional Brownian motion by the inverse of an independent $alpha$-stable subordinator.
We investigate the macroscopic behavior of asymmetric attractive zero-range processes on $mathbb{Z}$ where particles are destroyed at the origin at a rate of order $N^beta$, where $beta in mathbb{R}$ and $Ninmathbb{N}$ is the scaling parameter. We prove that the hydrodynamic limit of this particle system is described by the unique entropy solution of a hyperbolic conservation law, supplemented by a boundary condition depending on the range of $beta$. Namely, if $beta geqslant 0$, then the boundary condition prescribes the particle current through the origin, whereas if $beta<0$, the destruction of particles at the origin has no macroscopic effect on the system and no boundary condition is imposed at the hydrodynamic limit.
We consider a class of continuous-time stochastic growth models on $d$-dimensional lattice with non-negative real numbers as possible values per site. We remark that the diffusive scaling limit proven in our previous work [Nagahata, Y., Yoshida, N.: Central Limit Theorem for a Class of Linear Systems, Electron. J. Probab. Vol. 14, No. 34, 960--977. (2009)] can be extended to wider class of models so that it covers the cases of potlatch/smoothing processes.
We consider a class of interacting particle systems with values in $[0,8)^{zd}$, of which the binary contact path process is an example. For $d ge 3$ and under a certain square integrability condition on the total number of the particles, we prove a central limit theorem for the density of the particles, together with upper bounds for the density of the most populated site and the replica overlap.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا