No Arabic abstract
In this paper we consider three classes of interacting particle systems on $mathbb Z$: independent random walks, the exclusion process, and the inclusion process. We allow particles to switch their jump rate (the rate identifies the type of particle) between $1$ (fast particles) and $epsilonin[0,1]$ (slow particles). The switch between the two jump rates happens at rate $gammain(0,infty)$. In the exclusion process, the interaction is such that each site can be occupied by at most one particle of each type. In the inclusion process, the interaction takes places between particles of the same type at different sites and between particles of different type at the same site. We derive the macroscopic limit equations for the three systems, obtained after scaling space by $N^{-1}$, time by $N^2$, the switching rate by $N^{-2}$, and letting $Ntoinfty$. The limit equations for the macroscopic densities associated to the fast and slow particles is the well-studied double diffusivity model. This system of reaction-diffusion equations was introduced to model polycrystal diffusion and dislocation pipe diffusion, with the goal to overcome the limitations imposed by Ficks law. In order to investigate the microscopic out-of-equilibrium properties, we analyse the system on $[N]={1,ldots,N}$, adding boundary reservoirs at sites $1$ and $N$ of fast and slow particles, respectively. Inside $[N]$ particles move as before, but now particles are injected and absorbed at sites $1$ and $N$ with prescribed rates that depend on the particle type. We compute the steady-state density profile and the steady-state current. It turns out that uphill diffusion is possible, i.e., the total flow can be in the direction of increasing total density. This phenomenon, which cannot occur in a single-type particle system, is a violation of Ficks law made possible by the switching between types.
We consider various asymptotic scaling limits $Ntoinfty$ for the $2N$ complex eigenvalues of non-Hermitian random matrices in the symmetry class of the symplectic Ginibre ensemble. These are known to be integrable, forming Pfaffian point processes, and we obtain limiting expressions for the corresponding kernel for different potentials. The first part is devoted to the symplectic Ginibre ensemble with a Gaussian potential. We obtain the asymptotic at the edge of the spectrum in the vicinity of the real line. The unifying form of the kernel allows us to make contact with the bulk scaling along the real line and with the edge scaling away from the real line, where we recover the known determinantal process of the complex Ginibre ensemble. Part two covers ensembles of Mittag-Leffler type with a singularity at the origin. For potentials $Q(zeta)=|zeta|^{2lambda}-(2c/N)log|zeta|$, with $lambda>0$ and $c>-1$, the limiting kernel obeys a linear differential equation of fractional order $1/lambda$ at the origin. For integer $m=1/lambda$ it can be solved in terms of Mittag-Leffler functions. In the last part, we derive the Wards equation for a general class of potentials as a tool to investigate universality. This allows us to determine the functional form of kernels that are translation invariant up to its integration domain.
Particle-based stochastic reaction-diffusion (PBSRD) models are a popular approach for studying biological systems involving both noise in the reaction process and diffusive transport. In this work we derive coarse-grained deterministic partial integro-differential equation (PIDE) models that provide a mean field approximation to the volume reactivity PBSRD model, a model commonly used for studying cellular processes. We formulate a weak measure-valued stochastic process (MVSP) representation for the volume reactivity PBSRD model, demonstrating for a simplified but representative system that it is consistent with the commonly used Doi Fock Space representation of the corresponding forward equation. We then prove the convergence of the general volume reactivity model MVSP to the mean field PIDEs in the large-population (i.e. thermodynamic) limit.
We give a method for taking microscopic limits of normal matrix ensembles. We apply this method to study the behaviour near certain types of singular points on the boundary of the droplet. Our investigation includes ensembles without restrictions near the boundary, as well as hard edge ensembles, where the eigenvalues are confined to the droplet. We establish in both cases existence of new types of determinantal point fields, which differ from those which can appear at a regular boundary point, or in the bulk.
We consider the hydrodynamic scaling behavior of the mass density with respect to a general class of mass conservative interacting particle systems on ${mathbb Z}^n$, where the jump rates are asymmetric and long-range of order $|x|^{-(n+alpha)}$ for a particle displacement of order $|x|$. Two types of evolution equations are identified depending on the strength of the long-range asymmetry. When $0<alpha<1$, we find a new integro-partial differential hydrodynamic equation, in an anomalous space-time scale. On the other hand, when $alphageq 1$, we derive a Burgers hydrodynamic equation, as in the finite-range setting, in Euler scale.
We consider (a variant of) the external multi-particle diffusion-limited aggregation (MDLA) process of Rosenstock and Marquardt on the plane. Based on the recent findings of [11], [10] in one space dimension it is natural to conjecture that the scaling limit of the growing aggregate in such a model is given by the growing solid phase in a suitable probabilistic formulation of the single-phase supercooled Stefan problem for the heat equation. To address this conjecture, we extend the probabilistic formulation from [10] to multiple space dimensions. We then show that the equation that characterizes the growth rate of the solid phase in the supercooled Stefan problem is satisfied by the scaling limit of the external MDLA process with an inequality, which can be strict in general. In the course of the proof, we establish two additional results interesting in their own right: (i) the stability of a crossing property of planar Brownian motion and (ii) a rigorous connection between the probabilistic solutions to the supercooled Stefan problem and its classical and weak solutions.