Do you want to publish a course? Click here

The germanium quantum information route

158   0   0.0 ( 0 )
 Added by Giordano Scappucci
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the worldwide endeavor for disruptive quantum technologies, germanium is emerging as a versatile material to realize devices capable of encoding, processing, or transmitting quantum information. These devices leverage special properties of the germanium valence-band states, commonly known as holes, such as their inherently strong spin-orbit coupling and the ability to host superconducting pairing correlations. In this Review, we initially introduce the physics of holes in low-dimensional germanium structures with key insights from a theoretical perspective. We then examine the material science progress underpinning germanium-based planar heterostructures and nanowires. We review the most significant experimental results demonstrating key building blocks for quantum technology, such as an electrically driven universal quantum gate set with spin qubits in quantum dots and superconductor-semiconductor devices for hybrid quantum systems. We conclude by identifying the most promising prospects toward scalable quantum information processing.

rate research

Read More

Silicon-germanium heterostructures have successfully hosted quantum dot qubits, but the intrinsic near-degeneracy of the two lowest valley states poses an obstacle to high fidelity quantum computing. We present a modification to the Si/SiGe heterostructure by the inclusion of a spike in germanium concentration within the quantum well in order to increase the valley splitting. The heterostructure is grown by chemical vapor deposition and magnetospectroscopy is performed on gate-defined quantum dots to measure the excited state spectrum. We demonstrate a large and widely tunable valley splitting as a function of applied vertical electric field and lateral dot confinement. We further investigate the role of the germanium spike by means of tight-binding simulations in single-electron dots and show a robust doubling of the valley splitting when the spike is present, as compared to a standard (spike-free) heterostructure. This doubling effect is nearly independent of the electric field, germanium content of the spike, and spike location. This experimental evidence of a stable, tunable quantum dot, despite a drastic change to the heterostructure, provides a foundation for future heterostructure modifications.
Single-charge pumps are the main candidates for quantum-based standards of the unit ampere because they can generate accurate and quantized electric currents. In order to approach the metrological requirements in terms of both accuracy and speed of operation, in the past decade there has been a focus on semiconductor-based devices. The use of a variety of semiconductor materials enables the universality of charge pump devices to be tested, a highly desirable demonstration for metrology, with GaAs and Si pumps at the forefront of these tests. Here, we show that pumping can be achieved in a yet unexplored semiconductor, i.e. germanium. We realise a single-hole pump with a tunable-barrier quantum dot electrostatically defined at a Ge/SiGe heterostructure interface. We observe quantized current plateaux by driving the system with a single sinusoidal drive up to a frequency of 100 MHz. The operation of the prototype was affected by accidental formation of multiple dots, probably due to disorder potential, and random charge fluctuations. We suggest straightforward refinements of the fabrication process to improve pump characteristics in future experiments.
Recent work has demonstrated a new route to discrete time crystal physics in quantum spin chains by periodically driving nearest-neighbor exchange interactions in gate-defined quantum dot arrays [arXiv:2006.10913]. Here, we present a detailed analysis of exchange-driven Floquet physics in small arrays of GaAs quantum dots, including phase diagrams and additional diagnostics. We also show that emergent time-crystalline behavior can benefit the protection and manipulation of multi-spin states. For typical levels of nuclear spin noise in GaAs, the combination of driving and interactions protects spin-singlet states beyond what is possible in the absence of exchange interactions. We further show how to construct a time-crystal-inspired CZ gate between singlet-triplet qubits with high fidelity. These results show that periodically driving exchange couplings can enhance the performance of quantum dot spin systems for quantum information applications.
The spin of an electron or a nucleus in a semiconductor [1] naturally implements the unit of quantum information -- the qubit -- while providing a technological link to the established electronics industry [2]. The solid-state environment, however, may provide deleterious interactions between the qubit and the nuclear spins of surrounding atoms [3], or charge and spin fluctuators in defects, oxides and interfaces [4]. For group IV materials such as silicon, enrichment of the spin-zero 28-Si isotope drastically reduces spin-bath decoherence [5]. Experiments on bulk spin ensembles in 28-Si crystals have indeed demonstrated extraordinary coherence times [6-8]. However, it remained unclear whether these would persist at the single-spin level, in gated nanostructures near amorphous interfaces. Here we present the coherent operation of individual 31-P electron and nuclear spin qubits in a top-gated nanostructure, fabricated on an isotopically engineered 28-Si substrate. We report new benchmarks for coherence time (> 30 seconds) and control fidelity (> 99.99%) of any single qubit in solid state, and perform a detailed noise spectroscopy [9] to demonstrate that -- contrary to widespread belief -- the coherence is not limited by the proximity to an interface. Our results represent a fundamental advance in control and understanding of spin qubits in nanostructures.
Realization of superconductivity in Group IV semiconductors could have a strong impact in the direction quantum technologies will take in the future. Therefore, it is imperative to understand the nature of the superconducting phases in materials such as Silicon and Germanium. Here, we report systematic synthesis and characterization of superconducting phases in hyperdoped Germanium prepared by Gallium ion implantation beyond its solubility limits. The resulting structural and physical characteristics have been tailored by changing the implantation energy and activation annealing temperature. Surprisingly, in addition to the poly-crystalline phase with weakly-coupled superconducting Ga clusters we find a nano-crystalline phase with quasi-2D characteristics consisting of a thin Ga film constrained near top surfaces. The new phase shows signatures of strong disorder such as anomalous B${rm c}$ temperature dependence and crossings in magentoresistance isotherms. Apart from using hyperdoped Ge as a potential test-bed for studying signatures of quantum phase transitions (e.g. quantum Griffith singularity), our results suggest the possibility of integration of hyperdoped Ge nano-crystalline phase into superconducting circuits due to its 2D nature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا