Do you want to publish a course? Click here

Storing quantum information for 30 seconds in a nanoelectronic device

190   0   0.0 ( 0 )
 Added by Juha Teodor Muhonen
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The spin of an electron or a nucleus in a semiconductor [1] naturally implements the unit of quantum information -- the qubit -- while providing a technological link to the established electronics industry [2]. The solid-state environment, however, may provide deleterious interactions between the qubit and the nuclear spins of surrounding atoms [3], or charge and spin fluctuators in defects, oxides and interfaces [4]. For group IV materials such as silicon, enrichment of the spin-zero 28-Si isotope drastically reduces spin-bath decoherence [5]. Experiments on bulk spin ensembles in 28-Si crystals have indeed demonstrated extraordinary coherence times [6-8]. However, it remained unclear whether these would persist at the single-spin level, in gated nanostructures near amorphous interfaces. Here we present the coherent operation of individual 31-P electron and nuclear spin qubits in a top-gated nanostructure, fabricated on an isotopically engineered 28-Si substrate. We report new benchmarks for coherence time (> 30 seconds) and control fidelity (> 99.99%) of any single qubit in solid state, and perform a detailed noise spectroscopy [9] to demonstrate that -- contrary to widespread belief -- the coherence is not limited by the proximity to an interface. Our results represent a fundamental advance in control and understanding of spin qubits in nanostructures.



rate research

Read More

We demonstrate significant cooling of electrons in a nanostructure below 10 mK by demagnetisation of thin-film copper on a silicon chip. Our approach overcomes the typical bottleneck of weak electron-phonon scattering by coupling the electrons directly to a bath of refrigerated nuclei, rather than cooling via phonons in the host lattice. Consequently, weak electron-phonon scattering becomes an advantage. It allows the electrons to be cooled for an experimentally useful period of time to temperatures colder than the dilution refrigerator platform, the incoming electrical connections, and the host lattice. There are efforts worldwide to reach sub-millikelvin electron temperatures in nanostructures to study coherent electronic phenomena and improve the operation of nanoelectronic devices. On-chip magnetic cooling is a promising approach to meet this challenge. The method can be used to reach low, local electron temperatures in other nanostructures, obviating the need to adapt traditional, large demagnetisation stages. We demonstrate the technique by applying it to a nanoelectronic primary thermometer that measures its internal electron temperature. Using an optimised demagnetisation process, we demonstrate cooling of the on-chip electrons from 9 mK to below 5 mK for over 1000 seconds.
Spin-based silicon quantum electronic circuits offer a scalable platform for quantum computation, combining the manufacturability of semiconductor devices with the long coherence times afforded by spins in silicon. Advancing from current few-qubit devices to silicon quantum processors with upwards of a million qubits, as required for fault-tolerant operation, presents several unique challenges, one of the most demanding being the ability to deliver microwave signals for large-scale qubit control. Here we demonstrate a potential solution to this problem by using a three-dimensional dielectric resonator to broadcast a global microwave signal across a quantum nanoelectronic circuit. Critically, this technique utilizes only a single microwave source and is capable of delivering control signals to millions of qubits simultaneously. We show that the global field can be used to perform spin resonance of single electrons confined in a silicon double quantum dot device, establishing the feasibility of this approach for scalable spin qubit control.
Landauers principle states that erasure of each bit of information in a system requires at least a unit of energy $k_B T ln 2$ to be dissipated. In return, the blank bit may possibly be utilized to extract usable work of the amount $k_B T ln 2$, in keeping with the second law of thermodynamics. While in principle any collection of spins can be utilized as information storage, work extraction by utilizing this resource in principle requires specialized engines that are capable of using this resource. In this work, we focus on heat and charge transport in a quantum spin Hall device in the presence of a spin bath. We show how a properly initialized nuclear spin subsystem can be used as a memory resource for a Maxwells Demon to harvest available heat energy from the reservoirs to induce charge current that can power an external electrical load. We also show how to initialize the nuclear spin subsystem using applied bias currents which necessarily dissipate energy, hence demonstrating Landauers principle. This provides an alternative method of energy storage in an all-electrical device. We finally propose a realistic setup to experimentally observe a Landauer erasure/work extraction cycle.
Spin-helical states, which arise in quasi-one-dimensional (1D) channels with spin-orbital (SO) coupling, underpin efforts to realize topologically-protected quantum bits based on Majorana modes in semiconductor nanowires. Detecting helical states is challenging due to non-idealities present in real devices. Here we show by means of tight-binding calculations that by using ferromagnetic contacts it is possible to detect helical modes with high sensitivity even in the presence of realistic device effects, such as quantum interference. This is possible because of the spin-selective transmission properties of helical modes. In addition, we show that spin-polarized contacts provide a unique path to investigate the spin texture and spin-momentum locking properties of helical states. Our results are of interest not only for the ongoing development of Majorana qubits, but also as for realizing possible spin-based quantum devices, such as quantum spin modulators and interconnects based on spin-helical channels.
Nonreciprocal devices such as circulators and isolators belong to an important class of microwave components employed in applications like the measurement of mesoscopic circuits at cryogenic temperatures. The measurement protocols usually involve an amplification chain which relies on circulators to separate input and output channels and to suppress backaction from different stages on the sample under test. In these devices the usual reciprocal symmetry of circuits is broken by the phenomenon of Faraday rotation based on magnetic materials and fields. However, magnets are averse to on-chip integration, and magnetic fields are deleterious to delicate superconducting devices. Here we present a new proposal combining two stages of parametric modulation emulating the action of a circulator. It is devoid of magnetic components and suitable for on-chip integration. As the design is free of any dissipative elements and based on reversible operation, the device operates noiselessly, giving it an important advantage over other nonreciprocal active devices for quantum information processing applications.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا