Do you want to publish a course? Click here

How recurrent networks implement contextual processing in sentiment analysis

127   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Neural networks have a remarkable capacity for contextual processing--using recent or nearby inputs to modify processing of current input. For example, in natural language, contextual processing is necessary to correctly interpret negation (e.g. phrases such as not bad). However, our ability to understand how networks process context is limited. Here, we propose general methods for reverse engineering recurrent neural networks (RNNs) to identify and elucidate contextual processing. We apply these methods to understand RNNs trained on sentiment classification. This analysis reveals inputs that induce contextual effects, quantifies the strength and timescale of these effects, and identifies sets of these inputs with similar properties. Additionally, we analyze contextual effects related to differential processing of the beginning and end of documents. Using the insights learned from the RNNs we improve baseline Bag-of-Words models with simple extensions that incorporate contextual modification, recovering greater than 90% of the RNNs performance increase over the baseline. This work yields a new understanding of how RNNs process contextual information, and provides tools that should provide similar insight more broadly.



rate research

Read More

259 - Wei Li , Wei Shao , Shaoxiong Ji 2020
Sentiment analysis in conversations has gained increasing attention in recent years for the growing amount of applications it can serve, e.g., sentiment analysis, recommender systems, and human-robot interaction. The main difference between conversational sentiment analysis and single sentence sentiment analysis is the existence of context information which may influence the sentiment of an utterance in a dialogue. How to effectively encode contextual information in dialogues, however, remains a challenge. Existing approaches employ complicated deep learning structures to distinguish different parties in a conversation and then model the context information. In this paper, we propose a fast, compact and parameter-efficient party-ignorant framework named bidirectional emotional recurrent unit for conversational sentiment analysis. In our system, a generalized neural tensor block followed by a two-channel classifier is designed to perform context compositionality and sentiment classification, respectively. Extensive experiments on three standard datasets demonstrate that our model outperforms the state of the art in most cases.
It is very current in today life to seek for tracking the people opinion from their interaction with occurring events. A very common way to do that is comments in articles published in newspapers web sites dealing with contemporary events. Sentiment analysis or opinion mining is an emergent field who is the purpose is finding the behind phenomenon masked in opinionated texts. We are interested in our work by comments in Algerian newspaper websites. For this end, two corpora were used SANA and OCA. SANA corpus is created by collection of comments from three Algerian newspapers, and annotated by two Algerian Arabic native speakers, while OCA is a freely available corpus for sentiment analysis. For the classification we adopt Supports vector machines, naive Bayes and knearest neighbors. Obtained results are very promising and show the different effects of stemming in such domain, also knearest neighbors give important improvement comparing to other classifiers unlike similar works where SVM is the most dominant. From this study we observe the importance of dedicated resources and methods the newspaper comments sentiment analysis which we look forward in future works.
Pre-trained word embeddings are the primary method for transfer learning in several Natural Language Processing (NLP) tasks. Recent works have focused on using unsupervised techniques such as language modeling to obtain these embeddings. In contrast, this work focuses on extracting representations from multiple pre-trained supervised models, which enriches word embeddings with task and domain specific knowledge. Experiments performed in cross-task, cross-domain and cross-lingual settings indicate that such supervised embeddings are helpful, especially in the low-resource setting, but the extent of gains is dependent on the nature of the task and domain. We make our code publicly available.
In this paper, we propose a model to analyze sentiment of online stock forum and use the information to predict the stock volatility in the Chinese market. We have labeled the sentiment of the online financial posts and make the dataset public available for research. By generating a sentimental dictionary based on financial terms, we develop a model to compute the sentimental score of each online post related to a particular stock. Such sentimental information is represented by two sentiment indicators, which are fused to market data for stock volatility prediction by using the Recurrent Neural Networks (RNNs). Empirical study shows that, comparing to using RNN only, the model performs significantly better with sentimental indicators.
We introduce a tree-structured attention neural network for sentences and small phrases and apply it to the problem of sentiment classification. Our model expands the current recursive models by incorporating structural information around a node of a syntactic tree using both bottom-up and top-down information propagation. Also, the model utilizes structural attention to identify the most salient representations during the construction of the syntactic tree. To our knowledge, the proposed models achieve state of the art performance on the Stanford Sentiment Treebank dataset.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا