Do you want to publish a course? Click here

Structural Attention Neural Networks for improved sentiment analysis

316   0   0.0 ( 0 )
 Added by Filippos Kokkinos
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

We introduce a tree-structured attention neural network for sentences and small phrases and apply it to the problem of sentiment classification. Our model expands the current recursive models by incorporating structural information around a node of a syntactic tree using both bottom-up and top-down information propagation. Also, the model utilizes structural attention to identify the most salient representations during the construction of the syntactic tree. To our knowledge, the proposed models achieve state of the art performance on the Stanford Sentiment Treebank dataset.



rate research

Read More

Aspect-level sentiment classification aims to identify the sentiment expressed towards some aspects given context sentences. In this paper, we introduce an attention-over-attention (AOA) neural network for aspect level sentiment classification. Our approach models aspects and sentences in a joint way and explicitly captures the interaction between aspects and context sentences. With the AOA module, our model jointly learns the representations for aspects and sentences, and automatically focuses on the important parts in sentences. Our experiments on laptop and restaurant datasets demonstrate our approach outperforms previous LSTM-based architectures.
Aspect category sentiment analysis (ACSA) aims to predict the sentiment polarities of the aspect categories discussed in sentences. Since a sentence usually discusses one or more aspect categories and expresses different sentiments toward them, various attention-based methods have been developed to allocate the appropriate sentiment words for the given aspect category and obtain promising results. However, most of these methods directly use the given aspect category to find the aspect category-related sentiment words, which may cause mismatching between the sentiment words and the aspect categories when an unrelated sentiment word is semantically meaningful for the given aspect category. To mitigate this problem, we propose a Sentence Constituent-Aware Network (SCAN) for aspect-category sentiment analysis. SCAN contains two graph attention modules and an interactive loss function. The graph attention modules generate representations of the nodes in sentence constituency parse trees for the aspect category detection (ACD) task and the ACSA task, respectively. ACD aims to detect aspect categories discussed in sentences and is a auxiliary task. For a given aspect category, the interactive loss function helps the ACD task to find the nodes which can predict the aspect category but cant predict other aspect categories. The sentiment words in the nodes then are used to predict the sentiment polarity of the aspect category by the ACSA task. The experimental results on five public datasets demonstrate the effectiveness of SCAN.
We propose a topic-dependent attention model for sentiment classification and topic extraction. Our model assumes that a global topic embedding is shared across documents and employs an attention mechanism to derive local topic embedding for words and sentences. These are subsequently incorporated in a modified Gated Recurrent Unit (GRU) for sentiment classification and extraction of topics bearing different sentiment polarities. Those topics emerge from the words local topic embeddings learned by the internal attention of the GRU cells in the context of a multi-task learning framework. In this paper, we present the hierarchical architecture, the new GRU unit and the experiments conducted on users reviews which demonstrate classification performance on a par with the state-of-the-art methodologies for sentiment classification and topic coherence outperforming the current approaches for supervised topic extraction. In addition, our model is able to extract coherent aspect-sentiment clusters despite using no aspect-level annotations for training.
Aspect-based sentiment analysis aims to determine the sentiment polarity towards a specific aspect in online reviews. Most recent efforts adopt attention-based neural network models to implicitly connect aspects with opinion words. However, due to the complexity of language and the existence of multiple aspects in a single sentence, these models often confuse the connections. In this paper, we address this problem by means of effective encoding of syntax information. Firstly, we define a unified aspect-oriented dependency tree structure rooted at a target aspect by reshaping and pruning an ordinary dependency parse tree. Then, we propose a relational graph attention network (R-GAT) to encode the new tree structure for sentiment prediction. Extensive experiments are conducted on the SemEval 2014 and Twitter datasets, and the experimental results confirm that the connections between aspects and opinion words can be better established with our approach, and the performance of the graph attention network (GAT) is significantly improved as a consequence.
Aspect-based sentiment analysis (ABSA) aims to predict fine-grained sentiments of comments with respect to given aspect terms or categories. In previous ABSA methods, the importance of aspect has been realized and verified. Most existing LSTM-based models take aspect into account via the attention mechanism, where the attention weights are calculated after the context is modeled in the form of contextual vectors. However, aspect-related information may be already discarded and aspect-irrelevant information may be retained in classic LSTM cells in the context modeling process, which can be improved to generate more effective context representations. This paper proposes a novel variant of LSTM, termed as aspect-aware LSTM (AA-LSTM), which incorporates aspect information into LSTM cells in the context modeling stage before the attention mechanism. Therefore, our AA-LSTM can dynamically produce aspect-aware contextual representations. We experiment with several representative LSTM-based models by replacing the classic LSTM cells with the AA-LSTM cells. Experimental results on SemEval-2014 Datasets demonstrate the effectiveness of AA-LSTM.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا