Do you want to publish a course? Click here

Topological electronic states and thermoelectric transport at phase boundaries in single-layer WSe$_2$: An effective Hamiltonian theory

58   0   0.0 ( 0 )
 Added by Gregor Tkachov
 Publication date 2020
  fields Physics
and research's language is English
 Authors G. Tkachov




Ask ChatGPT about the research

Monolayer transition metal dichalcogenides in the distorted octahedral 1T$^prime$ phase exhibit a large bulk bandgap and gapless boundary states, which is an asset in the ongoing quest for topological electronics. In single-layer tungsten diselenide (WSe$_2$), the boundary states have been observed at well ordered interfaces between 1T$^prime$ and semiconducting (1H) phases. This paper proposes an effective 4-band theory for the boundary states in single-layer WSe$_2$,describing a Kramers pair of in-gap states as well as the behaviour at the spectrum termination points on the conduction and valence bands of the 1T$^prime$ phase. The spectrum termination points determine the temperature and chemical potential dependences of the ballistic conductance and thermopower at the phase boundary. Notably, the thermopower shows an ambipolar behaviour, changing the sign in the bandgap of the 1T$^prime$ - WSe$_2$ and reflecting its particle-hole asymmetry. The theory establishes a link between the bulk band structure and ballistic boundary transport in single-layer WSe$_2$ and is applicable to a range of related topological materials.



rate research

Read More

248 - E. Courtade , M. Semina , M. Manca 2017
Charged excitons, or X$^{pm}$-trions, in monolayer transition metal dichalcogenides have binding energies of several tens of meV. Together with the neutral exciton X$^0$ they dominate the emission spectrum at low and elevated temperatures. We use charge tunable devices based on WSe$_2$ monolayers encapsulated in hexagonal boron nitride, to investigate the difference in binding energy between X$^+$ and X$^-$ and the X$^-$ fine structure. We find in the charge neutral regime, the X$^0$ emission accompanied at lower energy by a strong peak close to the longitudinal optical (LO) phonon energy. This peak is absent in reflectivity measurements, where only the X$^0$ and an excited state of the X$^0$ are visible. In the $n$-doped regime, we find a closer correspondence between emission and reflectivity as the trion transition with a well-resolved fine-structure splitting of 6~meV for X$^-$ is observed. We present a symmetry analysis of the different X$^+$ and X$^-$ trion states and results of the binding energy calculations. We compare the trion binding energy for the $n$-and $p$-doped regimes with our model calculations for low carrier concentrations. We demonstrate that the splitting between the X$^+$ and X$^-$ trions as well as the fine structure of the X$^-$ state can be related to the short-range Coulomb exchange interaction between the charge carriers.
We report scanning tunneling microscopy (STM) and spectroscopy (STS) measurements of monolayer and bilayer WSe$_2$. We measure a band gap of 2.21 $pm$ 0.08 eV in monolayer WSe$_2$, which is much larger than the energy of the photoluminescence peak indicating a large excitonic binding energy. We additionally observe significant electronic scattering arising from atomic-scale defects. Using Fourier transform STS (FT-STS), we map the energy versus momentum dispersion relations for monolayer and bilayer WSe$_2$. Further, by tracking allowed and forbidden scattering channels as a function of energy we infer the spin texture of both the conduction and valence bands. We observe a large spin-splitting of the valence band due to strong spin-orbit coupling, and additionally observe spin-valley-layer coupling in the conduction band of bilayer WSe$_2$.
223 - Xiaosong Wu , Yike Hu , Ming Ruan 2011
The thermoelectric response of high mobility single layer epitaxial graphene on silicon carbide substrates as a function of temperature and magnetic field have been investigated. For the temperature dependence of the thermopower, a strong deviation from the Mott relation has been observed even when the carrier density is high, which reflects the importance of the screening effect. In the quantum Hall regime, the amplitude of the thermopower peaks is lower than a quantum value predicted by theories, despite the high mobility of the sample. A systematic reduction of the amplitude with decreasing temperature suggests that the suppression of the thermopower is intrinsic to Dirac electrons in graphene.
Moire heterobilayer transition metal dichalcogenides (TMDs) emerge as an ideal system for simulating the single-band Hubbard model and interesting correlated phases have been observed in these systems. Nevertheless, the moire bands in heterobilayer TMDs were believed to be topologically trivial. Recently, it was reported that both a quantum valley Hall insulating state at filling $ u=2$ (two holes per moire unit cell) and a valley polarized quantum anomalous Hall state at filling $ u=1$ were observed in AB stacked moire MoTe$_2$/WSe$_2$ heterobilayers. However, how the topologically nontrivial states emerge is not known. In this work, we propose that the pseudo-magnetic fields induced by lattice relaxation in moire MoTe$_2$/WSe$_2$ heterobilayers could naturally give rise to moire bands with finite Chern numbers. We show that a time-reversal invariant quantum valley Hall insulator is formed at full-filing $ u=2$, when two moire bands with opposite Chern numbers are filled. At half-filling $ u=1$, Coulomb interaction lifts the valley degeneracy and results in a valley polarized quantum anomalous Hall state, as observed in the experiment. Our theory identifies a new way to achieve topologically non-trivial states in heterobilayer TMD materials.
72 - Saban M. Hus 2020
Non-volatile resistive switching, also known as memristor effect in two terminal devices, has emerged as one of the most important components in the ongoing development of high-density information storage, brain-inspired computing, and reconfigurable systems. Recently, the unexpected discovery of memristor effect in atomic monolayers of transitional metal dichalcogenide sandwich structures has added a new dimension of interest owing to the prospects of size scaling and the associated benefits. However, the origin of the switching mechanism in atomic sheets remains uncertain. Here, using monolayer MoS$_2$ as a model system, atomistic imaging and spectroscopy reveal that metal substitution into sulfur vacancy results in a non-volatile change in resistance. The experimental observations are corroborated by computational studies of defect structures and electronic states. These remarkable findings provide an atomistic understanding on the non-volatile switching mechanism and open a new direction in precision defect engineering, down to a single defect, for achieving optimum performance metrics including memory density, switching energy, speed, and reliability using atomic nanomaterials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا