Do you want to publish a course? Click here

Single-defect Memristor in MoS$_2$ Atomic-layer

73   0   0.0 ( 0 )
 Added by Saban Hus
 Publication date 2020
  fields Physics
and research's language is English
 Authors Saban M. Hus




Ask ChatGPT about the research

Non-volatile resistive switching, also known as memristor effect in two terminal devices, has emerged as one of the most important components in the ongoing development of high-density information storage, brain-inspired computing, and reconfigurable systems. Recently, the unexpected discovery of memristor effect in atomic monolayers of transitional metal dichalcogenide sandwich structures has added a new dimension of interest owing to the prospects of size scaling and the associated benefits. However, the origin of the switching mechanism in atomic sheets remains uncertain. Here, using monolayer MoS$_2$ as a model system, atomistic imaging and spectroscopy reveal that metal substitution into sulfur vacancy results in a non-volatile change in resistance. The experimental observations are corroborated by computational studies of defect structures and electronic states. These remarkable findings provide an atomistic understanding on the non-volatile switching mechanism and open a new direction in precision defect engineering, down to a single defect, for achieving optimum performance metrics including memory density, switching energy, speed, and reliability using atomic nanomaterials.



rate research

Read More

Quantum light sources in solid-state systems are of major interest as a basic ingredient for integrated quantum device technologies. The ability to tailor quantum emission through deterministic defect engineering is of growing importance for realizing scalable quantum architectures. However, a major difficulty is that defects need to be positioned site-selectively within the solid. Here, we overcome this challenge by controllably irradiating single-layer MoS$_{2}$ using a sub-nm focused helium ion beam to deterministically create defects. Subsequent encapsulation of the ion bombarded MoS$_{2}$ flake with high-quality hBN reveals spectrally narrow emission lines that produce photons at optical wavelengths in an energy window of one to two hundred meV below the neutral 2D exciton of MoS$_{2}$. Based on ab-initio calculations we interpret these emission lines as stemming from the recombination of highly localized electron-hole complexes at defect states generated by the helium ion bombardment. Our approach to deterministically write optically active defect states in a single transition metal dichalcogenide layer provides a platform for realizing exotic many-body systems, including coupled single-photon sources and exotic Hubbard systems.
The optical susceptibility is a local, minimally-invasive and spin-selective probe of the ground state of a two-dimensional electron gas. We apply this probe to a gated monolayer of MoS$_2$. We demonstrate that the electrons are spin polarized. Of the four available bands, only two are occupied. These two bands have the same spin but different valley quantum numbers. We argue that strong Coulomb interactions are a key aspect of this spontaneous symmetry breaking. The Bohr radius is so small that even electrons located far apart in phase space interact, facilitating exchange couplings to align the spins.
We present a transient absorption setup combining broadband detection over the visible-UV range with high temporal resolution ($sim$20fs) which is ideally suited to trigger and detect vibrational coherences in different classes of materials. We generate and detect coherent phonons (CPs) in single layer (1L) MoS$_2$, as a representative semiconducting 1L-transition metal dichalcogenide (TMD), where the confined dynamical interaction between excitons and phonons is unexplored. The coherent oscillatory motion of the out-of-plane $A_{1}$ phonons, triggered by the ultrashort laser pulses, dynamically modulates the excitonic resonances on a timescale of few tens fs. We observe an enhancement by almost two orders of magnitude of the CP amplitude when detected in resonance with the C exciton peak, combined with a resonant enhancement of CP generation efficiency. Ab initio calculations of the change in 1L-MoS$_2$ band structure induced by the $A_{1}$ phonon displacement confirm a strong coupling with the C exciton. The resonant behavior of the CP amplitude follows the same spectral profile of the calculated Raman susceptibility tensor. This demonstrates that CP excitation in 1L-MoS$_2$ can be described as a Raman-like scattering process. These results explain the CP generation process in 1L-TMDs, paving the way for coherent all-optical control of excitons in layered materials in the THz frequency range.
Monolayer transition metal dichalcogenides (TMDC) grown by chemical vapor deposition (CVD) are plagued by a significantly lower optical quality compared to exfoliated TMDC. In this work we show that the optical quality of CVD-grown MoSe$_2$ is completely recovered if the material is sandwiched in MoS$_2$/MoSe$_2$/MoS$_2$ trilayer van der Waals heterostructures. We show by means of density-functional theory that this remarkable and unexpected result is due to defect healing: S atoms of the more reactive MoS$_2$ layers are donated to heal Se vacancy defects in the middle MoSe$_2$ layer. In addition, the trilayer structure exhibits a considerable charge-transfer mediated valley polarization of MoSe$_2$ without the need for resonant excitation. Our fabrication approach, relying solely on simple flake transfer technique, paves the way for the scalable production of large-area TMDC materials with excellent optical quality.
We present a density functional theory parametrized hybrid k$cdot$p tight binding model for electronic properties of atomically thin films of transition-metal dichalcogenides, 2H-$MX_2$ ($M$=Mo, W; $X$=S, Se). We use this model to analyze intersubband transitions in $p$- and $n$-doped $2{rm H}-MX_2$ films and predict the line shapes of the intersubband excitations, determined by the subband-dependent two-dimensional electron and hole masses, as well as excitation lifetimes due to emission and absorption of optical phonons. We find that the intersubband spectra of atomically thin films of the 2H-${MX_2}$ family with thicknesses of $N=2$ to $7$ layers densely cover the infrared spectral range of wavelengths between $2$ and $30 {rm mu m}$. The detailed analysis presented in this paper shows that for thin $n$-doped films, the electronic dispersion and spin-valley degeneracy of the lowest-energy subbands oscillate between odd and even number of layers, which may also offer interesting opportunities for quantum Hall effect studies in these systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا