Do you want to publish a course? Click here

Effect of deep gain layer and Carbon infusion on LGAD radiation hardness

104   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The properties of 50 um thick Low Gain Avalanche Diode (LGAD) detectors manufactured by Hamamatsu photonics (HPK) and Fondazione Bruno Kessler (FBK) were tested before and after irradiation with 1 MeV neutrons. Their performance were measured in charge collection studies using b-particles from a 90Sr source and in capacitance-voltage scans (C-V) to determine the bias to deplete the gain layer. Carbon infusion to the gain layer of the sensors was tested by FBK in the UFSD3 production. HPK instead produced LGADs with a very thin, highly doped and deep multiplication layer. The sensors were exposed to a neutron fluence from 4e14 neq/cm2 to 4e15 neq/cm2. The collected charge and the timing resolution were measured as a function of bias voltage at -30C, furthermore the profile of the capacitance over voltage of the sensors was measured.



rate research

Read More

Low Gain Avalanche Detectors (LGAD) are based on a n++-p+-p-p++ structure where an appropriate doping of the multiplication layer (p+) leads to high enough electric fields for impact ionization. Gain factors of few tens in charge significantly improve the resolution of timing measurements, particularly for thin detectors, where the timing performance was shown to be limited by Landau fluctuations. The main obstacle for their operation is the decrease of gain with irradiation, attributed to effective acceptor removal in the gain layer. Sets of thin sensors were produced by two different producers on different substrates, with different gain layer doping profiles and thicknesses (45, 50 and 80 um). Their performance in terms of gain/collected charge and leakage current was compared before and after irradiation with neutrons and pions up to the equivalent fluences of 5e15 cm-2. Transient Current Technique and charge collection measurements with LHC speed electronics were employed to characterize the detectors. The thin LGAD sensors were shown to perform much better than sensors of standard thickness (~300 um) and offer larger charge collection with respect to detectors without gain layer for fluences <2e15 cm-2. Larger initial gain prolongs the beneficial performance of LGADs. Pions were found to be more damaging than neutrons at the same equivalent fluence, while no significant difference was found between different producers. At very high fluences and bias voltages the gain appears due to deep acceptors in the bulk, hence also in thin standard detectors.
In this paper, we report on the radiation resistance of 50-micron thick LGAD detectors manufactured at the Fondazione Bruno Kessler employing several different doping combinations of the gain layer. LGAD detectors with gain layer doping of Boron, Boron low-diffusion, Gallium, Carbonated Boron and Carbonated Gallium have been designed and successfully produced. These sensors have been exposed to neutron fluences up to $phi_n sim 3 cdot 10^{16}; n/cm^2$ and to proton fluences up to $phi_p sim 9cdot10^{15}; p/cm^2$ to test their radiation resistance. The experimental results show that Gallium-doped LGADs are more heavily affected by initial acceptor removal than Boron-doped LGAD, while the presence of Carbon reduces initial acceptor removal both for Gallium and Boron doping. Boron low-diffusion shows a higher radiation resistance than that of standard Boron implant, indicating a dependence of the initial acceptor removal mechanism upon the implant width. This study also demonstrates that proton irradiation is at least twice more effective in producing initial acceptor removal, making proton irradiation far more damaging than neutron irradiation.
148 - T. Rohe , A. Bean , W. Erdmann 2010
Pixel detectors are used in the innermost part of the multi purpose experiments at LHC and are therefore exposed to the highest fluences of ionising radiation, which in this part of the detectors consists mainly of charged pions. The radiation hardness of all detector components has thoroughly been tested up to the fluences expected at the LHC. In case of an LHC upgrade, the fluence will be much higher and it is not yet clear how long the present pixel modules will stay operative in such a harsh environment. The aim of this study was to establish such a limit as a benchmark for other possible detector concepts considered for the upgrade. As the sensors and the readout chip are the parts most sensitive to radiation damage, samples consisting of a small pixel sensor bump-bonded to a CMS-readout chip (PSI46V2.1) have been irradiated with positive 200 MeV pions at PSI up to 6E14 Neq and with 21 GeV protons at CERN up to 5E15 Neq. After irradiation the response of the system to beta particles from a Sr-90 source was measured to characterise the charge collection efficiency of the sensor. Radiation induced changes in the readout chip were also measured. The results show that the present pixel modules can be expected to be still operational after a fluence of 2.8E15 Neq. Samples irradiated up to 5E15 Neq still see the beta particles. However, further tests are needed to confirm whether a stable operation with high particle detection efficiency is possible after such a high fluence.
The development of instrumentation to be operated in high-radiation environments is one of the main challenges in fundamental research. Besides space and nuclear applications, particle physics experiments also need radiation-hard devices. The focus of this paper is a new irradiation facility based on the medical cyclotron located at the Bern University Hospital (Insespital), which is used as a controlled 18 MeV proton source. The adjustable beam current allows for dose rate dependent characterisation over a large dynamic range, from 0.1 to 1000 Grad per hour. The beam can be tuned so that the user can obtain the desired irradiation conditions. A complete study of the device under irradiation is possible thanks to dedicated beam monitoring systems as well as a power control system for the device under irradiation, which can be operated on-line. Further characterisations of the irradiated devices are possible thanks to a laboratory equipped with gamma spectroscopy detectors, ammeters and transient current technique setups.
The interest in using the radiation detectors based on high resistive chromium-compensated GaAs (GaAs:Cr) in high energy physics and others applied fields has been growing steadily due to its numerous advantages over others classical materials. High radiation hardness at room temperature stands out and needs to be systematically investigated. In this paper an experimental study of the effect of 20.9 MeV electrons generated by the LINAC-200 accelerator on some properties of GaAs:Cr based sensors is presented. In parallel, Si sensors were irradiated at the same conditions, measured and analyzed in order to perform a comparative study. The target sensors were irradiated with the dose up to 1.5 MGy. The current-voltage characteristics, resistivity, charge collection efficiency and their dependences on the bias voltage and temperature were measured at different absorbed doses. An analysis of the possible microscopic mechanisms leading to the observed effects in GaAs:Cr sensors is presented in the article.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا