Do you want to publish a course? Click here

A facility for radiation hardness studies based on the Bern medical cyclotron

64   0   0.0 ( 0 )
 Added by Antonio Miucci Dr.
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The development of instrumentation to be operated in high-radiation environments is one of the main challenges in fundamental research. Besides space and nuclear applications, particle physics experiments also need radiation-hard devices. The focus of this paper is a new irradiation facility based on the medical cyclotron located at the Bern University Hospital (Insespital), which is used as a controlled 18 MeV proton source. The adjustable beam current allows for dose rate dependent characterisation over a large dynamic range, from 0.1 to 1000 Grad per hour. The beam can be tuned so that the user can obtain the desired irradiation conditions. A complete study of the device under irradiation is possible thanks to dedicated beam monitoring systems as well as a power control system for the device under irradiation, which can be operated on-line. Further characterisations of the irradiated devices are possible thanks to a laboratory equipped with gamma spectroscopy detectors, ammeters and transient current technique setups.



rate research

Read More

In this work we study the performance of silicon photomultiplier (SiPM) light sensors after exposure to the JULIC cyclotron proton beam, of energy $sim$ 39 MeV, relative to their performance before exposure. The SiPM devices used in this study show a significant change in their behavior and downward shift of their breakdown voltage by as much as $sim$ 0.4$pm$0.1 V. Single photon measurements appear to be no longer possible for the SiPMs under study after exposure to a dose of $sim$ 0.2 Gy (corresponding to an integrated proton flux of $sim$$phi_{p}$=1.06x10$^{8}$ p/cm$^{2}$). No visible damage to the surface of the devices was caused by the exposure.
Modern avalanche photodiodes (APDs) with high gain are good device candidates for light readout from detectors applied in relativistic heavy ion collisions experiments. The results of the investigations of the APDs properties from Zecotek, Ketek and Hamamatsu manufacturers after irradiation using secondary neutrons from cyclotron facility U120M at NPI of ASCR in v{R}ev{z} are presented. The results of the investigations can be used for the design of the detectors for the experiments at NICA and FAIR.
148 - T. Rohe , A. Bean , W. Erdmann 2010
Pixel detectors are used in the innermost part of the multi purpose experiments at LHC and are therefore exposed to the highest fluences of ionising radiation, which in this part of the detectors consists mainly of charged pions. The radiation hardness of all detector components has thoroughly been tested up to the fluences expected at the LHC. In case of an LHC upgrade, the fluence will be much higher and it is not yet clear how long the present pixel modules will stay operative in such a harsh environment. The aim of this study was to establish such a limit as a benchmark for other possible detector concepts considered for the upgrade. As the sensors and the readout chip are the parts most sensitive to radiation damage, samples consisting of a small pixel sensor bump-bonded to a CMS-readout chip (PSI46V2.1) have been irradiated with positive 200 MeV pions at PSI up to 6E14 Neq and with 21 GeV protons at CERN up to 5E15 Neq. After irradiation the response of the system to beta particles from a Sr-90 source was measured to characterise the charge collection efficiency of the sensor. Radiation induced changes in the readout chip were also measured. The results show that the present pixel modules can be expected to be still operational after a fluence of 2.8E15 Neq. Samples irradiated up to 5E15 Neq still see the beta particles. However, further tests are needed to confirm whether a stable operation with high particle detection efficiency is possible after such a high fluence.
Ensuring the radiation hardness of PbWO4 crystals was one of the main priorities during the construction of the electromagnetic calorimeter of the CMS experiment at CERN. The production on an industrial scale of radiation hard crystals and their certification over a period of several years represented a difficult challenge both for CMS and for the crystal suppliers. The present article reviews the related scientific and technological problems encountered.
The properties of 50 um thick Low Gain Avalanche Diode (LGAD) detectors manufactured by Hamamatsu photonics (HPK) and Fondazione Bruno Kessler (FBK) were tested before and after irradiation with 1 MeV neutrons. Their performance were measured in charge collection studies using b-particles from a 90Sr source and in capacitance-voltage scans (C-V) to determine the bias to deplete the gain layer. Carbon infusion to the gain layer of the sensors was tested by FBK in the UFSD3 production. HPK instead produced LGADs with a very thin, highly doped and deep multiplication layer. The sensors were exposed to a neutron fluence from 4e14 neq/cm2 to 4e15 neq/cm2. The collected charge and the timing resolution were measured as a function of bias voltage at -30C, furthermore the profile of the capacitance over voltage of the sensors was measured.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا