No Arabic abstract
In user targeting automation systems, concept drift in input data is one of the main challenges. It deteriorates model performance on new data over time. Previous research on concept drift mostly proposed model retraining after observing performance decreases. However, this approach is suboptimal because the system fixes the problem only after suffering from poor performance on new data. Here, we introduce an adversarial validation approach to concept drift problems in user targeting automation systems. With our approach, the system detects concept drift in new data before making inference, trains a model, and produces predictions adapted to the new data. We show that our approach addresses concept drift effectively with the AutoML3 Lifelong Machine Learning challenge data as well as in Ubers internal user targeting automation system, MaLTA.
As next-generation networks materialize, increasing levels of intelligence are required. Federated Learning has been identified as a key enabling technology of intelligent and distributed networks; however, it is prone to concept drift as with any machine learning application. Concept drift directly affects the models performance and can result in severe consequences considering the critical and emergency services provided by modern networks. To mitigate the adverse effects of drift, this paper proposes a concept drift detection system leveraging the federated learning updates provided at each iteration of the federated training process. Using dimensionality reduction and clustering techniques, a framework that isolates the systems drifted nodes is presented through experiments using an Intelligent Transportation System as a use case. The presented work demonstrates that the proposed framework is able to detect drifted nodes in a variety of non-iid scenarios at different stages of drift and different levels of system exposure.
Data stream mining extracts information from large quantities of data flowing fast and continuously (data streams). They are usually affected by changes in the data distribution, giving rise to a phenomenon referred to as concept drift. Thus, learning models must detect and adapt to such changes, so as to exhibit a good predictive performance after a drift has occurred. In this regard, the development of effective drift detection algorithms becomes a key factor in data stream mining. In this work we propose CU RIE, a drift detector relying on cellular automata. Specifically, in CU RIE the distribution of the data stream is represented in the grid of a cellular automata, whose neighborhood rule can then be utilized to detect possible distribution changes over the stream. Computer simulations are presented and discussed to show that CU RIE, when hybridized with other base learners, renders a competitive behavior in terms of detection metrics and classification accuracy. CU RIE is compared with well-established drift detectors over synthetic datasets with varying drift characteristics.
Concept drift is a phenomenon in which the distribution of a data stream changes over time in unforeseen ways, causing prediction models built on historical data to become inaccurate. While a variety of automated methods have been developed to identify when concept drift occurs, there is limited support for analysts who need to understand and correct their models when drift is detected. In this paper, we present a visual analytics method, DriftVis, to support model builders and analysts in the identification and correction of concept drift in streaming data. DriftVis combines a distribution-based drift detection method with a streaming scatterplot to support the analysis of drift caused by the distribution changes of data streams and to explore the impact of these changes on the models accuracy. A quantitative experiment and two case studies on weather prediction and text classification have been conducted to demonstrate our proposed tool and illustrate how visual analytics can be used to support the detection, examination, and correction of concept drift.
We demonstrate that model-based derivative free optimisation algorithms can generate adversarial targeted misclassification of deep networks using fewer network queries than non-model-based methods. Specifically, we consider the black-box setting, and show that the number of networks queries is less impacted by making the task more challenging either through reducing the allowed $ell^{infty}$ perturbation energy or training the network with defences against adversarial misclassification. We illustrate this by contrasting the BOBYQA algorithm with the state-of-the-art model-free adversarial targeted misclassification approaches based on genetic, combinatorial, and direct-search algorithms. We observe that for high $ell^{infty}$ energy perturbations on networks, the aforementioned simpler model-free methods require the fewest queries. In contrast, the proposed BOBYQA based method achieves state-of-the-art results when the perturbation energy decreases, or if the network is trained against adversarial perturbations.
Many methods have been proposed to detect concept drift, i.e., the change in the distribution of streaming data, due to concept drift causes a decrease in the prediction accuracy of algorithms. However, the most of current detection methods are based on the assessment of the degree of change in the data distribution, cannot identify the type of concept drift. In this paper, we propose Active Drift Detection with Meta learning (Meta-ADD), a novel framework that learns to classify concept drift by tracking the changed pattern of error rates. Specifically, in the training phase, we extract meta-features based on the error rates of various concept drift, after which a meta-detector is developed via a prototypical neural network by representing various concept drift classes as corresponding prototypes. In the detection phase, the learned meta-detector is fine-tuned to adapt to the corresponding data stream via stream-based active learning. Hence, Meta-ADD uses machine learning to learn to detect concept drifts and identify their types automatically, which can directly support drift understand. The experiment results verify the effectiveness of Meta-ADD.