No Arabic abstract
As next-generation networks materialize, increasing levels of intelligence are required. Federated Learning has been identified as a key enabling technology of intelligent and distributed networks; however, it is prone to concept drift as with any machine learning application. Concept drift directly affects the models performance and can result in severe consequences considering the critical and emergency services provided by modern networks. To mitigate the adverse effects of drift, this paper proposes a concept drift detection system leveraging the federated learning updates provided at each iteration of the federated training process. Using dimensionality reduction and clustering techniques, a framework that isolates the systems drifted nodes is presented through experiments using an Intelligent Transportation System as a use case. The presented work demonstrates that the proposed framework is able to detect drifted nodes in a variety of non-iid scenarios at different stages of drift and different levels of system exposure.
Federated learning (FL) involves multiple distributed devices jointly training a shared model without any of the participants having to reveal their local data to a centralized server. Most of previous FL approaches assume that data on devices are fixed and stationary during the training process. However, this assumption is unrealistic because these devices usually have varying sampling rates and different system configurations. In addition, the underlying distribution of the device data can change dynamically over time, which is known as concept drift. Concept drift makes the learning process complicated because of the inconsistency between existing and upcoming data. Traditional concept drift handling techniques such as chunk based and ensemble learning-based methods are not suitable in the federated learning frameworks due to the heterogeneity of local devices. We propose a novel approach, FedConD, to detect and deal with the concept drift on local devices and minimize the effect on the performance of models in asynchronous FL. The drift detection strategy is based on an adaptive mechanism which uses the historical performance of the local models. The drift adaptation is realized by adjusting the regularization parameter of objective function on each local device. Additionally, we design a communication strategy on the server side to select local updates in a prudent fashion and speed up model convergence. Experimental evaluations on three evolving data streams and two image datasets show that model~detects and handles concept drift, and also reduces the overall communication cost compared to other baseline methods.
Data stream mining extracts information from large quantities of data flowing fast and continuously (data streams). They are usually affected by changes in the data distribution, giving rise to a phenomenon referred to as concept drift. Thus, learning models must detect and adapt to such changes, so as to exhibit a good predictive performance after a drift has occurred. In this regard, the development of effective drift detection algorithms becomes a key factor in data stream mining. In this work we propose CU RIE, a drift detector relying on cellular automata. Specifically, in CU RIE the distribution of the data stream is represented in the grid of a cellular automata, whose neighborhood rule can then be utilized to detect possible distribution changes over the stream. Computer simulations are presented and discussed to show that CU RIE, when hybridized with other base learners, renders a competitive behavior in terms of detection metrics and classification accuracy. CU RIE is compared with well-established drift detectors over synthetic datasets with varying drift characteristics.
Given a stream of entries over time in a multi-aspect data setting where concept drift is present, how can we detect anomalous activities? Most of the existing unsupervised anomaly detection approaches seek to detect anomalous events in an offline fashion and require a large amount of data for training. This is not practical in real-life scenarios where we receive the data in a streaming manner and do not know the size of the stream beforehand. Thus, we need a data-efficient method that can detect and adapt to changing data trends, or concept drift, in an online manner. In this work, we propose MemStream, a streaming multi-aspect anomaly detection framework, allowing us to detect unusual events as they occur while being resilient to concept drift. We leverage the power of a denoising autoencoder to learn representations and a memory module to learn the dynamically changing trend in data without the need for labels. We prove the optimum memory size required for effective drift handling. Furthermore, MemStream makes use of two architecture design choices to be robust to memory poisoning. Experimental results show the effectiveness of our approach compared to state-of-the-art streaming baselines using 2 synthetic datasets and 11 real-world datasets.
Concept drift is a phenomenon in which the distribution of a data stream changes over time in unforeseen ways, causing prediction models built on historical data to become inaccurate. While a variety of automated methods have been developed to identify when concept drift occurs, there is limited support for analysts who need to understand and correct their models when drift is detected. In this paper, we present a visual analytics method, DriftVis, to support model builders and analysts in the identification and correction of concept drift in streaming data. DriftVis combines a distribution-based drift detection method with a streaming scatterplot to support the analysis of drift caused by the distribution changes of data streams and to explore the impact of these changes on the models accuracy. A quantitative experiment and two case studies on weather prediction and text classification have been conducted to demonstrate our proposed tool and illustrate how visual analytics can be used to support the detection, examination, and correction of concept drift.
In user targeting automation systems, concept drift in input data is one of the main challenges. It deteriorates model performance on new data over time. Previous research on concept drift mostly proposed model retraining after observing performance decreases. However, this approach is suboptimal because the system fixes the problem only after suffering from poor performance on new data. Here, we introduce an adversarial validation approach to concept drift problems in user targeting automation systems. With our approach, the system detects concept drift in new data before making inference, trains a model, and produces predictions adapted to the new data. We show that our approach addresses concept drift effectively with the AutoML3 Lifelong Machine Learning challenge data as well as in Ubers internal user targeting automation system, MaLTA.