Do you want to publish a course? Click here

Anharmonicity-driven Rashba co-helical excitons break quantum efficiency limitation

49   0   0.0 ( 0 )
 Added by Chang Woo Myung
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Closed-shell light-emitting diodes (LEDs) suffer from the internal quantum efficiency (IQE) limitation imposed by optically inactive triplet excitons. Here we show an undiscovered emission mechanism of lead-halide-perovskites (LHPs) APbX$_3$ (A=Cs/CN$_2$H$_5$; X=Cl/Br/I) that circumvents the efficiency limit of closed-shell LEDs. Though efficient emission is prohibited by optically inactive $J=0$ in inversion symmetric LHPs, the anharmonicity arising from stereochemistry of Pb and resonant orbital-bonding network along the imaginary A$^+cdots$X$^-$ (T$_{1u}$) transverse optical (TO) modes, breaks the inversion symmetry and introduces disorder and Rashba-Dresselhaus spin-orbit coupling (RD-SOC). This leads to bright co-helical and dark anti-helical excitons. Many-body theory and first-principles calculations affirm that the optically active co-helical exciton is the lowest excited state in organic/inorganic LHPs. Thus, RD-SOC can drive to achieve the ideal 50 $%$ IQE by utilizing anharmonicity, much over the 25 $%$ IQE limitation for closed-shell LEDs.



rate research

Read More

We study the texture of helical currents in metallic planar strips in the presence of Rashba spin-orbit coupling (RSOC) on the lattice at zero temperature. In the noninteracting case, and in the absence of external electromagnetic sources, we determine by exact numerical diagonalization of the single-particle Hamiltonian, the distribution across the strip section of these Rashba helical currents (RHC) as well as their sign oscillation, as a function of the RSOC strength, strip width, electron filling, and strip boundary conditions. Then, we study the effects of charge currents introduced into the system by an Aharonov-Bohm flux for the case of rings or by a voltage bias in the case of open strips. The former setup is studied by variational Monte Carlo, and the later, by the time-dependent density-matrix-renormalization group technique. Particularly for strips formed by two, three and four coupled chains, we show how these RHC vary in the presence of such induced charge current, and how their differences between spin-up and spin-down electron currents on each chain, help to explain the distribution across the strip of charge currents, both of the spin conserving and the spin flipping types. We also predict the appearance of polarized charge currents on each chain. Finally, we show that these Rashba helical currents and their derived features remain in the presence of an on-site Hubbard repulsion as long as the system remains metallic, at quarter filling, and even at half-filling where a Mott-Hubbard metal-insulator transition occurs for large Hubbard repulsion.
Theoretical frameworks used to qualitatively and quantitatively describe nuclear dynamics in solids are often based on the harmonic approximation. However, this approximation is known to become inaccurate or to break down completely in many modern functional materials. Interestingly, there is no reliable measure to quantify anharmonicity so far. Thus, a systematic classification of materials in terms of anharmonicity and a benchmark of methodologies that may be appropriate for different strengths of anharmonicity is currently impossible. In this work, we derive and discuss a statistical measure that reliably classifies compounds across temperature regimes and material classes by their degree of anharmonicity. This enables us to distinguish harmonic materials, for which anharmonic effects constitute a small perturbation on top of the harmonic approximation, from strongly anharmonic materials, for which anharmonic effects become significant or even dominant and the treatment of anharmonicity in terms of perturbation theory is more than questionable. We show that the analysis of this measure in real and reciprocal space is able to shed light on the underlying microscopic mechanisms, even at conditions close to, e.g., phase transitions or defect formation. Eventually, we demonstrate that the developed approach is computationally efficient and enables rapid high-throughput searches by scanning over a set of several hundred binary solids. The results show that strong anharmonic effects beyond the perturbative limit are not only active in complex materials or close to phase transitions, but already at moderate temperatures in simple binary compounds.
The Rashba effect is fundamental to the physics of two-dimensional electron systems and underlies a variety of spintronic phenomena. It has been proposed that the formation of Rashba-type spin splittings originates microscopically from the existence of orbital angular momentum (OAM) in the Bloch wave functions. Here, we present detailed experimental evidence for this OAM-based origin of the Rashba effect by angle-resolved photoemission (ARPES) and two-photon photoemission (2PPE) experiments for a monolayer AgTe on Ag(111). Using quantitative low-energy electron diffraction (LEED) analysis we determine the structural parameters and the stacking of the honeycomb overlayer with picometer precision. Based on an orbital-symmetry analysis in ARPES and supported by first-principles calculations, we unequivocally relate the presence and absence of Rashba-type spin splittings in different bands of AgTe to the existence of OAM.
In the context of one-dimensional fermionic systems, helical Luttiger liquids are not only characterized by intriguing spin properties, but also by the possibility to be manipulated by means of electrostatic gates, exploiting finite Rashba coupling. We use this property to show that a heterostructure composed of a helical Luttinger liquid, contacted to two metallic leads and supplemented by top gates, can be used as a tunable thermal valve. By relying on bosonization techniques and scattering of plasmonic modes, we investigate the performance of this valve with respect to electron-electron interactions, temperature, and properties of the gates. The maximal modulation of the thermal conductance that the proposed device can achieve is, for experimentally relevant parameters, around $7 %$. Such variation can be both positive or negative. Moreover, a modification in the geometry of the gate can lead to particular temperature dependencies related to interference effects. We also argue that the effects we predict can be used to establish the helical nature of the edge states in two-dimensional topological insulators.
The efficiencies of photonic devices are primarily governed by radiative quantum efficiency, which is a property given by the light emitting material. Quantitative characterization for carbon nanotubes, however, has been difficult despite being a prominent material for nanoscale photonics. Here we determine the radiative quantum efficiency of bright excitons in carbon nanotubes by modifying the exciton dynamics through cavity quantum electrodynamical effects. Silicon photonic crystal nanobeam cavities are used to induce the Purcell effect on individual carbon nanotubes. Spectral and temporal behavior of the cavity enhancement is characterized by photoluminescence microscopy, and the fraction of the radiative decay process is evaluated. We find that the radiative quantum efficiency is near unity for bright excitons in carbon nanotubes at room temperature.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا