Do you want to publish a course? Click here

Near-unity radiative quantum efficiency of excitons in carbon nanotubes

101   0   0.0 ( 0 )
 Added by Yuichiro K. Kato
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The efficiencies of photonic devices are primarily governed by radiative quantum efficiency, which is a property given by the light emitting material. Quantitative characterization for carbon nanotubes, however, has been difficult despite being a prominent material for nanoscale photonics. Here we determine the radiative quantum efficiency of bright excitons in carbon nanotubes by modifying the exciton dynamics through cavity quantum electrodynamical effects. Silicon photonic crystal nanobeam cavities are used to induce the Purcell effect on individual carbon nanotubes. Spectral and temporal behavior of the cavity enhancement is characterized by photoluminescence microscopy, and the fraction of the radiative decay process is evaluated. We find that the radiative quantum efficiency is near unity for bright excitons in carbon nanotubes at room temperature.



rate research

Read More

Single-walled carbon nanotubes (SWCNTs) are promising absorbers and emitters to enable novel photonic and optoelectronic applications but are also known to severely suffer from low optical quantum yields. Here we demonstrate SWCNTs excitons coupled to plasmonic nanocavities reaching deeply into the Purcell regime with FP=234 (average FP=76), near unity quantum yields of 70% (average 41%), and a photon emission rate of 1.7 MHz into the first lens. The measured ultra-narrow exciton linewidth (18 micro eV) implies furthermore generation of indistinguishable single photons from a SWCNT. To demonstrate utility beyond quantum light sources we show that nanocavity-coupled SWCNTs perform as single-molecule thermometers detecting plasmonically induced heat (Delta T=150K) in a unique interplay of excitons, phonons, and plasmons at the nanoscale.
126 - Vasili Perebeinos , J. Tersoff , 2005
We calculate the radiative lifetime and energy bandstructure of excitons in semiconducting carbon nanotubes, within a tight-binding approach. In the limit of rapid interband thermalization, the radiative decay rate is maximized at intermediate temperatures, decreasing at low temperature because the lowest-energy excitons are optically forbidden. The intrinsic phonons cannot scatter excitons between optically active and forbidden bands, so sample-dependent extrinsic effects that break the symmetries can play a central role. We calculate the diameter-dependent energy splittings between singlet and triplet excitons of different symmetries, and the resulting dependence of radiative lifetime on temperature and tube diameter.
Photophysics of single-wall carbon nanotubes (SWCNTs) is intensively studied due to their potential application in light harvesting and optoelectronics. Excited states of SWCNTs form strongly bound electron-hole pairs, excitons, of which only singlet excitons participate in application relevant optical transitions. Long-living spin-triplet states hinder applications but they emerge as candidates for quantum information storage. Therefore knowledge of the triplet exciton energy structure, in particular in a SWCNT chirality dependent manner, is greatly desired. We report the observation of light emission from triplet state recombination, i.e. phosphorescence, for several SWCNT chiralities using a purpose-built spectrometer. This yields the singlet-triplet gap as a function of SWCNT diameter and it follows predictions based on quantum confinement effects. Saturation under high microwave power (up to 10 W) irradiation allows to determine the spin-relaxation time for triplet states. Our study sensitively discriminates whether the lowest optically active state is populated from an excited state on the same nanotube or through Forster exciton energy transfer from a neighboring nanotube.
Near-infrared magneto-optical spectroscopy of single-walled carbon nanotubes reveals two absorption peaks with an equal strength at high magnetic fields ($>$ 55 T). We show that the peak separation is determined by the Aharonov-Bohm phase due to the tube-threading magnetic flux, which breaks the time-reversal symmetry and lifts the valley degeneracy. This field-induced symmetry breaking thus overcomes the Coulomb-induced intervalley mixing which is predicted to make the lowest exciton state optically inactive (or ``dark).
We examine the excitonic nature of high-lying optical transitions in single-walled carbon nanotubes by means of Rayleigh scattering spectroscopy. A careful analysis of the principal transitions of individual semiconducting and metallic nanotubes reveals that in both cases the lineshape is consistent with an excitonic model, but not one of free-carriers. For semiconducting species, side-bands are observed at ~200 meV above the third and fourth optical transitions. These features are ascribed to exciton-phonon bound states. Such side-bands are not apparent for metallic nanotubes,as expected from the reduced strength of excitonic interactions in these systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا