No Arabic abstract
We introduce skein theoretic techniques to compute the Yang-Baxter (YB) homology and cohomology groups of the R-matrix corresponding to the Jones polynomial. More specifically, we show that the YB operator $R$ for Jones, normalized for homology, admits a skein decomposition $R = I + betaalpha$, where $alpha: V^{otimes 2} rightarrow k$ is a cup pairing map and $beta: k rightarrow V^{otimes 2}$ is a cap copairing map, and differentials in the chain complex associated to $R$ can be decomposed into horizontal tensor concatenations of cups and caps. We apply our skein theoretic approach to determine the second and third YB homology groups, confirming a conjecture of Przytycki and Wang. Further, we compute the cohomology groups of $R$, and provide computations in higher dimensions that yield some annihilations of submodules.
We construct solutions to the set-theoretic Yang-Baxter equation using braid group representations in free group automorphisms and their Fox differentials. The method resembles the extensions of groups and quandles.
A homology theory is developed for set-theoretic Yang-Baxter equations, and knot invariants are constructed by generalized colorings by biquandles and Yang-Baxter cocycles.
We determine the Betti numbers for the (degenerate and normalized) set-theoretic Yang-Baxter (co)homology groups of cyclic biquandles and estimate their torsion subgroups. This partially settles the conjecture presented by Przytycki, Vojtechovsky, and Yang. We also obtain cocycles which are representatives of the elements of a basis for the free part of the cohomology group of a cyclic biquandle.
The aim of this paper is to study the skein exact sequence for knot Floer homology. We prove precise graded version of this sequence, and also one using $HFm$. Moreover, a complete argument is also given purely within the realm of grid diagrams.
We show that the bordered-sutured Floer invariant of the complement of a tangle in an arbitrary 3-manifold $Y$, with minimal conditions on the bordered-sutured structure, satisfies an unoriented skein exact triangle. This generalizes a theorem by Manolescu for links in $S^3$. We give a theoretical proof of this result by adapting holomorphic polygon counts to the bordered-sutured setting, and also give a combinatorial description of all maps involved and explicitly compute them. We then show that, for $Y = S^3$, our exact triangle coincides with Manolescus. Finally, we provide a graded version of our result, explaining in detail the grading reduction process involved.