Do you want to publish a course? Click here

On the skein exact squence for knot Floer homology

141   0   0.0 ( 0 )
 Added by Peter S. Ozsvath
 Publication date 2007
  fields
and research's language is English




Ask ChatGPT about the research

The aim of this paper is to study the skein exact sequence for knot Floer homology. We prove precise graded version of this sequence, and also one using $HFm$. Moreover, a complete argument is also given purely within the realm of grid diagrams.



rate research

Read More

146 - C.-M. Michael Wong 2013
We re-derive Manolescus unoriented skein exact triangle for knot Floer homology over F_2 combinatorially using grid diagrams, and extend it to the case with Z coefficients by sign refinements. Iteration of the triangle gives a cube of resolutions that converges to the knot Floer homology of an oriented link. Finally, we re-establish the homological sigma-thinness of quasi-alternating links.
Given a knot K in S^3, let u^-(K) (respectively, u^+(K)) denote the minimum number of negative (respectively, positive) crossing changes among all unknotting sequences for K. We use knot Floer homology to construct the invariants l^-(K), l^+(K) and l(K), which give lower bounds on u^-(K), u^+(K) and the unknotting number u(K), respectively. The invariant l(K) only vanishes for the unknot, and is greater than or equal to the u^-(K). Moreover, the difference l(K)- u^-(K) can be arbitrarily large. We also present several applications towards bounding the unknotting number, the alteration number and the Gordian distance.
318 - Eaman Eftekhary 2015
We obtain a formula for the Heegaard Floer homology (hat theory) of the three-manifold $Y(K_1,K_2)$ obtained by splicing the complements of the knots $K_isubset Y_i$, $i=1,2$, in terms of the knot Floer homology of $K_1$ and $K_2$. We also present a few applications. If $h_n^i$ denotes the rank of the Heegaard Floer group $widehat{mathrm{HFK}}$ for the knot obtained by $n$-surgery over $K_i$ we show that the rank of $widehat{mathrm{HF}}(Y(K_1,K_2))$ is bounded below by $$big|(h_infty^1-h_1^1)(h_infty^2-h_1^2)- (h_0^1-h_1^1)(h_0^2-h_1^2)big|.$$ We also show that if splicing the complement of a knot $Ksubset Y$ with the trefoil complements gives a homology sphere $L$-space then $K$ is trivial and $Y$ is a homology sphere $L$-space.
We modify the construction of knot Floer homology to produce a one-parameter family of homologies for knots in the three-sphere. These invariants can be used to give homomorphisms from the smooth concordance group to the integers, giving bounds on the four-ball genus and the concordance genus of knots. We give some applications of these homomorphisms.
Knot Floer homology is an invariant for knots discovered by the authors and, independently, Jacob Rasmussen. The discovery of this invariant grew naturally out of studying how a certain three-manifold invariant, Heegaard Floer homology, changes as the three-manifold undergoes Dehn surgery along a knot. Since its original definition, thanks to the contributions of many researchers, knot Floer homology has emerged as a useful tool for studying knots in its own right. We give here a few selected highlights of this theory, and then move on to some new algebraic developments in the computation of knot Floer homology.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا