Do you want to publish a course? Click here

Plasmon production from dark matter scattering

156   0   0.0 ( 0 )
 Added by Tongyan Lin
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a first calculation of the rate for plasmon production in semiconductors from nuclei recoiling against dark matter. The process is analogous to bremsstrahlung of transverse photon modes, but with a longitudinal plasmon mode emitted instead. For dark matter in the 10 MeV - 1 GeV mass range, we find that the plasmon bremsstrahlung rate is 4-5 orders of magnitude smaller than that for elastic scattering, but 4-5 orders of magnitude larger than the transverse bremsstrahlung rate. Because the plasmon can decay into electronic excitations and has characteristic energy given by the plasma frequency $omega_p$, with $omega_p approx 16$ eV in Si crystals, plasmon production provides a distinctive signature and new method to detect nuclear recoils from sub-GeV dark matter.



rate research

Read More

We present models of resonant self-interacting dark matter in a dark sector with QCD, based on analogies to the meson spectra in Standard Model QCD. For dark mesons made of two light quarks, we present a simple model that realizes resonant self-interaction (analogous to the $phi$-K-K system) and thermal freeze-out. We also consider asymmetric dark matter composed of heavy and light dark quarks to realize a resonant self-interaction (analogous to the $Upsilon(4S)$-B-B system) and discuss the experimental probes of both setups. Finally, we comment on the possible resonant self-interactions already built into SIMP and ELDER mechanisms while making use of lattice results to determine feasibility.
Lines in the energy spectrum of gamma rays are a fascinating experimental signal, which are often considered smoking gun evidence of dark matter annihilation. The current generation of gamma ray observatories are currently closing in on parameter space of great interest in the context of dark matter which is a thermal relic. We consider theories in which the dark matters primary connection to the Standard Model is via the top quark, realizing strong gamma ray lines consistent with a thermal relic through the forbidden channel mechanism proposed in the Higgs in Space Model. We consider realistic UV-completions of the Higgs in Space and related theories, and show that a rich structure of observable gamma ray lines is consistent with a thermal relic as well as constraints from dark matter searches and the LHC. Particular attention is paid to the one loop contributions to the continuum gamma rays, which can easily swamp the line signals in some cases, and have been largely overlooked in previous literature.
We consider Dark Matter composed of an oscillating singlet scalar field. On top of the mass term, the scalar is equipped with a potential spontaneously breaking Z_2-symmetry. This potential dominates at early times and leads to the time-dependent expectation value of the scalar, which decreases in the expanding Universe. As it drops below some critical value, the symmetry gets restored, and the Dark Matter field starts to oscillate around zero. We arrange the spontaneous symmetry breaking through the interaction of the scalar with the Ricci curvature. In that way, superheavy Dark Matter can be produced at very early times. Depending on its mass, the production takes place at inflation (very large masses up to the Grand Unification scale), at preheating, or at radiation-dominated stage (masses 10^{6}-10^{7} Gev).
We present a scenario of vector dark matter production from symmetry breaking at the end of inflation. In this model, the accumulated energy density associated with the quantum fluctuations of the dark photon accounts for the present energy density of dark matter. The inflaton is a real scalar field while a heavy complex scalar field, such as the waterfall of hybrid inflation, is charged under the dark gauge field. After the heavy field becomes tachyonic at the end of inflation, rolling rapidly towards its global minimum, the dark photon acquires mass via the Higgs mechanism. To prevent the decay of the vector field energy density during inflation, we introduce couplings between the inflaton and the gauge field such that the energy is pumped to the dark sector. The setup can generate the observed dark matter abundance for a wide range of the dark photons mass and with the reheat temperature around $10^{12}$ GeV. The model predicts the formation of cosmic strings at the end of inflation with the tensions which are consistent with the CMB upper bounds.
We introduce a model in which the genesis of dark matter (DM) and neutrino masses is associated with a first order phase transition of a scalar singlet field. During the phase transition a source right-handed neutrino (RHN) acquires a spacetime-dependent mass dynamically, a small fraction of which is converted via resonant oscillations into a very weakly mixed dark RHN which decays to a dark matter RHN with the observed relic abundance. Neutrino masses are generated via a traditional two RHN type-I seesaw between a fourth RHN and the source neutrino. The gravitational waves produced during the phase transition have a peak frequency that increases with the DM mass, and are detectable at future gravitational wave interferometers for DM masses above ~ 1 MeV. Since the source RHNs are heavier than the electroweak scale, successful leptogenesis is also attainable.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا