Do you want to publish a course? Click here

Gravitational misalignment mechanism of Dark Matter production

81   0   0.0 ( 0 )
 Added by Sabir Ramazanov Dr.
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider Dark Matter composed of an oscillating singlet scalar field. On top of the mass term, the scalar is equipped with a potential spontaneously breaking Z_2-symmetry. This potential dominates at early times and leads to the time-dependent expectation value of the scalar, which decreases in the expanding Universe. As it drops below some critical value, the symmetry gets restored, and the Dark Matter field starts to oscillate around zero. We arrange the spontaneous symmetry breaking through the interaction of the scalar with the Ricci curvature. In that way, superheavy Dark Matter can be produced at very early times. Depending on its mass, the production takes place at inflation (very large masses up to the Grand Unification scale), at preheating, or at radiation-dominated stage (masses 10^{6}-10^{7} Gev).



rate research

Read More

A model of vector dark matter that communicates with the Standard Model only through gravitational interactions has been investigated. It has been shown in detail how does the canonical quantization of the vector field in varying FLRW geometry implies a tachyonic enhancement of some of its momentum modes. Approximate solutions of the mode equation have been found and verified against exact numerical ones. De Sitter geometry has been assumed during inflation while after inflation a non-standard cosmological era of reheating with a generic equation of state has been adopted which is followed by the radiation-dominated universe. It has been shown that the spectrum of dark vectors produced gravitationally is centered around a characteristic comoving momentum $k_star$ that is determined in terms of the mass of the vector $m_X$, the Hubble parameter during inflation $H_{rm I}$, the equation of state parameter $w$ and the efficiency of reheating $gamma$. Regions in the parameter space consistent with the observed dark matter relic abundance have been determined, justifying the gravitational production as a viable mechanism for vector dark matter. The results obtained in this paper are applicable within various possible models of inflation/reheating with non-standard cosmology parametrized effectively by the corresponding equation of state and efficiency of reheating.
101 - Shu-Yu Ho , Chih-Ting Lu 2021
Inspired by our recent paper reshuffled SIMP dark matter, we notice that the reaction rate of the two-loop induced $2 to 2$ process may dominate over or be comparable with that of the $3 to 2$ process at the chemical freezeout of Co-SIMP dark matter [Phys. Rev. Lett. 125, 131301 (2020)], especially when the Co-SIMP mass is close to the standard model particle mass (called the edge case). To check our point, we then derive the Boltzmann equation with all relevant annihilation cross sections in an electrophilic model and numerically solve it to obtain the cosmological evolution of Co-SIMP dark matter. Our result shows that the two-loop induced $2 to 2$ process does modify the parameter space of the coupling for the edge case in the Co-SIMP mechanism and has to be taken into account in UV completion models.
We present a first calculation of the rate for plasmon production in semiconductors from nuclei recoiling against dark matter. The process is analogous to bremsstrahlung of transverse photon modes, but with a longitudinal plasmon mode emitted instead. For dark matter in the 10 MeV - 1 GeV mass range, we find that the plasmon bremsstrahlung rate is 4-5 orders of magnitude smaller than that for elastic scattering, but 4-5 orders of magnitude larger than the transverse bremsstrahlung rate. Because the plasmon can decay into electronic excitations and has characteristic energy given by the plasma frequency $omega_p$, with $omega_p approx 16$ eV in Si crystals, plasmon production provides a distinctive signature and new method to detect nuclear recoils from sub-GeV dark matter.
A zero initial velocity of the axion field is assumed in the conventional misalignment mechanism. We propose an alternative scenario where the initial velocity is nonzero, which may arise from an explicit breaking of the PQ symmetry in the early Universe. We demonstrate that, depending on the specifics about the initial velocity and the time order of the PQ symmetry breaking vs. inflation, this new scenario can alter the conventional prediction for the axion relic abundance in different, potentially significant ways. As a result, new viable parameter regions for axion dark matter may open up.
We study the stochastic background of gravitational waves which accompany the sudden freeze-out of dark matter triggered by a cosmological first order phase transition that endows dark matter with mass. We consider models that produce the measured dark matter relic abundance via (1) bubble filtering, and (2) inflation and reheating, and show that gravitational waves from these mechanisms are detectable at future interferometers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا