Do you want to publish a course? Click here

A Remark on stress of a spatially uniform dislocation density field

81   0   0.0 ( 0 )
 Added by Siran Li
 Publication date 2020
  fields Physics
and research's language is English
 Authors Siran Li




Ask ChatGPT about the research

In an interesting recent paper [1] (A. Acharya, Stress of a spatially uniform dislocation density field, J. Elasticity 137 (2019), 151--155), Acharya proved that the stress produced by a spatially uniform dislocation density field in a body comprising a nonlinear elastic material may fail to vanish under no loads. The class of counterexamples constructed in [1] is essentially $2$-dimensional: it works with the subgroup $mathcal{O}(2) oplus langle{bf Id}rangle subset mathcal{O}(3)$. The objective of this note is to extend Acharyas result in [1] to $mathcal{O}(3)$, subject to an additional structural assumption and less regularity requirements.



rate research

Read More

We prove a sharp Lieb-Thirring type inequality for Jacobi matrices, thereby settling a conjecture of Hundertmark and Simon. An interesting feature of the proof is that it employs a technique originally used by Hundertmark-Laptev-Weidl concerning sums of singular values for compact operators.
341 - T.F. Kieffer , M.Loss 2020
The aim of this paper is to study, in dimensions 2 and 3, the pure-power non-linear Schrodinger equation with an external uniform magnetic field included. In particular, we derive a general criteria on the initial data and the power of the non-linearity so that the corresponding solution blows up in finite time, and we show that the time for blow up to occur decreases as the strength of the magnetic field increases. In addition, we also discuss some observations about Strichartz estimates in 2 dimensions for the Mehler kernel, as well as similar blow-up results for the non-linear Pauli equation.
We apply a recent result of Borichev-Golinskii-Kupin on the Blaschke-type conditions for zeros of analytic functions on the complex plane with a cut along the positive semi-axis to the problem of the eigenvalues distribution of the Fredholm-type analytic operator-valued functions.
In this paper we prove for rank one perturbations that negative two times reciprocal of the imaginary part of resonance point is equal to the rate of change of the scattering phase as a function of the coupling constant, where the coupling constant is equal to the real part of the resonance point. This equality is in agreement with Breit-Wigner formula from quantum scattering theory. For general relatively trace class perturbations, we also give a formula for the spectral shift function in terms of resonance points, non-real and real.
The mechanical response and load bearing capacity of high performance polymer composites changes due to diffusion of a fluid, temperature, oxidation or the extent of the deformation. Hence, there is a need to study the response of bodies under such degradation mechanisms. In this paper, we study the effect of degradation and healing due to the diffusion of a fluid on the response of a solid which prior to the diffusion can be described by the generalized neo-Hookean model. We show that a generalized neo-Hookean solid - which behaves like an elastic body (i.e., it does not produce entropy) within a purely mechanical context - creeps and stress relaxes when infused with a fluid and behaves like a body whose material properties are time dependent. We specifically investigate the torsion of a generalized neo-Hookean circular cylindrical annulus infused with a fluid. The equations of equilibrium for a generalized neo-Hookean solid are solved together with the convection-diffusion equation for the fluid concentration. Different boundary conditions for the fluid concentration are also considered. We also solve the problem for the case when the diffusivity of the fluid depends on the deformation of the generalized neo-Hookean solid.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا