Do you want to publish a course? Click here

Non-linear Schrodinger Equation in a uniform magnetic field

342   0   0.0 ( 0 )
 Added by Michael Loss
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The aim of this paper is to study, in dimensions 2 and 3, the pure-power non-linear Schrodinger equation with an external uniform magnetic field included. In particular, we derive a general criteria on the initial data and the power of the non-linearity so that the corresponding solution blows up in finite time, and we show that the time for blow up to occur decreases as the strength of the magnetic field increases. In addition, we also discuss some observations about Strichartz estimates in 2 dimensions for the Mehler kernel, as well as similar blow-up results for the non-linear Pauli equation.



rate research

Read More

We consider propagation of optical pulses under the interplay of dispersion and Kerr non-linearity in optical fibres with impurities distributed at random uniformly on the fibre. By using a model based on the non-linear Schrodinger equation we clarify how such inhomogeneities affect different aspects such as the number of solitons present and the intensity of the signal. We also obtain the mean distance for the signal to dissipate to a given level.
We study the existence and stability of the standing waves for the periodic cubic nonlinear Schrodinger equation with a point defect determined by a periodic Dirac distribution at the origin. This equation admits a smooth curve of positive periodic solutions in the form of standing waves with a profile given by the Jacobi elliptic function of dnoidal type. Via a perturbation method and continuation argument, we obtain that in the case of an attractive defect the standing wave solutions are stable in $H^1_{per}$ with respect to perturbations which have the same period as the wave itself. In the case of a repulsive defect, the standing wave solutions are stable in the subspace of even functions of $H^1_{per}$ and unstable in $H^1_{per}$ with respect to perturbations which have the same period as the wave itself.
374 - Remi Carles 2009
We consider the propagation of wave packets for the nonlinear Schrodinger equation, in the semi-classical limit. We establish the existence of a critical size for the initial data, in terms of the Planck constant: if the initial data are too small, the nonlinearity is negligible up to the Ehrenfest time. If the initial data have the critical size, then at leading order the wave function propagates like a coherent state whose envelope is given by a nonlinear equation, up to a time of the same order as the Ehrenfest time. We also prove a nonlinear superposition principle for these nonlinear wave packets.
In this paper, we search the dependence of some statistical quantities such as the free energy, the mean energy, the entropy, and the specific heat for the Schrodinger equation on the temperature, particularly the case of a non-central potential. The basic point is to find the partition function which is obtained by a method based on the Euler-Maclaurin formula. At first, we present the analytical results by supporting with some plots for the thermal functions for one- and three-dimensional cases to find out the effect of the angular momentum. We also search then the effect of the angle-dependent part of the non-central potential. We discuss the results briefly for a phase transition for the system. We also present our results for three-dimesional harmonic oscillator.
500 - Pablo Miranda 2015
We consider the discrete spectrum of the two-dimensional Hamiltonian $H=H_0+V$, where $H_0$ is a Schrodinger operator with a non-constant magnetic field $B$ that depends only on one of the spatial variables, and $V$ is an electric potential that decays at infinity. We study the accumulation rate of the eigenvalues of H in the gaps of its essential spectrum. First, under some general conditions on $B$ and $V$, we introduce effective Hamiltonians that govern the main asymptotic term of the eigenvalue counting function. Further, we use the effective Hamiltonians to find the asymptotic behavior of the eigenvalues in the case where the potential V is a power-like decaying function and in the case where it is a compactly supported function, showing a semiclassical behavior of the eigenvalues in the first case and a non-semiclassical behavior in the second one. We also provide a criterion for the finiteness of the number of eigenvalues in the gaps of the essential spectrum of $H$
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا