No Arabic abstract
Given the consensus that pressure improves cation order in most of known materials, a discovery of pressure-induced disorder could require reconsideration of order-disorder transition in solid state physics/chemistry and geophysics. Double perovskites Y2CoIrO6 and Y2CoRuO6 synthesized at ambient pressure show B-site order, while the polymorphs synthesized at 6 and 15 GPa are partially-ordered and disordered respectively. With the decrease of ordering degrees, the lattices are shrunken and the crystal structures alter from monoclinic to orthorhombic symmetry. Correspondingly, long-range ferrimagnetic order in the B-site ordered phases are gradually overwhelmed by B-site disorder. Theoretical calculations suggest that unusual unit cell compressions under external pressures unexpectedly stabilize the disordered phases of Y2CoIrO6 and Y2CoRuO6.
In a semimetal, both electron and hole carriers contribute to the density of states at the Fermi level. The small band overlaps and multi-band effects give rise to many novel electronic properties, such as relativistic Dirac fermions with linear dispersion, titanic magnetoresistance and unconventional superconductivity. Black phosphorus has recently emerged as an exceptional semiconductor with high carrier mobility and a direct, tunable bandgap. Of particular importance is the search for exotic electronic states in black phosphorus, which may amplify the materials potential beyond semiconductor devices. Here we show that a moderate hydrostatic pressure effectively suppresses the band gap and induces a Lifshitz transition from semiconductor to semimetal in black phosphorus; a colossal magnetoresistance is observed in the semimetallic phase. Quantum oscillations in high magnetic field reveal the complex Fermi surface topology of the semimetallic black phosphorus. In particular, a Dirac-like fermion emerges at around 1.2 GPa, which is continuously tuned by external pressure. The observed semi-metallic behavior greatly enriches black phosphoruss material property, and sets the stage for the exploration of novel electronic states in this material. Moreover, these interesting behaviors make phosphorene a good candidate for the realization of a new two-dimensional relativistic electron system, other than graphene.
By means of synchrotron X-ray diffraction, we studied the effect of high pressure, P, up to 13 GPa on the room temperature crystal structure of superconducting CaC6. In this P range, no change of the pristine space group symmetry, textit{R=3m}, is found. However, at 9 GPa, i.e. close to the critical value at which a large T_c reduction was reported recently, we observed a compressibility jump concomitant to a large broadening of Bragg peaks. The reversibility of both effects upon depressurization and symmetry arguments give evidence of an order-disorder phase transition of second order, presumably associated with the Ca sublattice, which provides a full account for the above Tc reduction.
We report a pressure-induced phase transition in the frustrated kagome material jarosite at ~45 GPa, which leads to the disappearance of magnetic order. Using a suite of experimental techniques, we characterize the structural, electronic, and magnetic changes in jarosite through this phase transition. Synchrotron powder X-ray diffraction and Fourier transform infrared spectroscopy experiments, analyzed in aggregate with the results from density functional theory calculations, indicate that the material changes from a R-3m structure to a structure with a R-3c space group. The resulting phase features a rare twisted kagome lattice in which the integrity of the equilateral Fe3+ triangles persists. Based on symmetry arguments we hypothesize that the resulting structural changes alter the magnetic interactions to favor a possible quantum paramagnetic phase at high pressure.
We have investigated spin and orbital magnetic moments of the Re 5d ion in the double perovskites A2FeReO6 (A = Ba, Sr, Ca) by X-ray magnetic circular dichroism (XMCD) at the Re L(2,3) edges. In these ferrimagnetic compounds an unusually large negative spin and positive orbital magnetic moment at the Re atoms was detected. The presence of a finite spin magnetic moment in a non-magnetic double perovskite as observed in the double perovskite Sr2ScReO6 proves that Re has also a small, but finite intrinsic magnetic moment. We further show for the examples of Ba and Ca that the usually neglected alkaline earth ions undoubtedly also contribute to the magnetism in the ferrimagnetic double perovskites.
Cadmium arsenide Cd$_3$As$_2$ hosts massless Dirac electrons in its ambient-conditions tetragonal phase. We report X-ray diffraction and electrical resistivity measurements of Cd$_3$As$_2$ upon cycling pressure beyond the critical pressure of the tetragonal phase and back to ambient conditions. We find that at room temperature the transition between the low- and high-pressure phases results in large microstrain and reduced crystallite size both on rising and falling pressure. This leads to non-reversible electronic properties including self-doping associated with defects and a reduction of the electron mobility by an order of magnitude due to increased scattering. Our study indicates that the structural transformation is sluggish and shows a sizable hysteresis of over 1~GPa. Therefore, we conclude that the transition is first-order reconstructive, with chemical bonds being broken and rearranged in the high-pressure phase. Using the diffraction measurements we demonstrate that annealing at ~200$^circ$C greatly improves the crystallinity of the high-pressure phase. We show that its Bragg peaks can be indexed as a primitive orthorhombic lattice with a_HP~8.68 A b_HP~17.15 A and c_HP~18.58 A. The diffraction study indicates that during the structural transformation a new phase with another primitive orthorhombic structure may be also stabilized by deviatoric stress, providing an additional venue for tuning the unconventional electronic states in Cd3As2.