No Arabic abstract
We report a pressure-induced phase transition in the frustrated kagome material jarosite at ~45 GPa, which leads to the disappearance of magnetic order. Using a suite of experimental techniques, we characterize the structural, electronic, and magnetic changes in jarosite through this phase transition. Synchrotron powder X-ray diffraction and Fourier transform infrared spectroscopy experiments, analyzed in aggregate with the results from density functional theory calculations, indicate that the material changes from a R-3m structure to a structure with a R-3c space group. The resulting phase features a rare twisted kagome lattice in which the integrity of the equilateral Fe3+ triangles persists. Based on symmetry arguments we hypothesize that the resulting structural changes alter the magnetic interactions to favor a possible quantum paramagnetic phase at high pressure.
Given the consensus that pressure improves cation order in most of known materials, a discovery of pressure-induced disorder could require reconsideration of order-disorder transition in solid state physics/chemistry and geophysics. Double perovskites Y2CoIrO6 and Y2CoRuO6 synthesized at ambient pressure show B-site order, while the polymorphs synthesized at 6 and 15 GPa are partially-ordered and disordered respectively. With the decrease of ordering degrees, the lattices are shrunken and the crystal structures alter from monoclinic to orthorhombic symmetry. Correspondingly, long-range ferrimagnetic order in the B-site ordered phases are gradually overwhelmed by B-site disorder. Theoretical calculations suggest that unusual unit cell compressions under external pressures unexpectedly stabilize the disordered phases of Y2CoIrO6 and Y2CoRuO6.
We report a new tetragonal ground-state for perovskite-structured PbCrO3 from DFT+U calculations, and explain its anomalously large volume. The new structure is stabilized due to orbital ordering of Cr-d in the presence of a large tetragonal crystal field, mainly due to off-centering of the Pb atom. At higher pressures (smaller volumes) there is a first-order transition to a cubic phase where the Cr-d orbitals are orbitally liquid. This phase-transition is accompanied by a ~11.5% volume collapse, one of the largest known for transition-metal oxides. The large ferroelasticity and its strong coupling to the orbital degrees of freedom could be exploited to form potentially useful magnetostrictive materials
Transition metals, Fe, Co and Ni, are the canonical systems for studying the effect of external perturbations on ferromagnetism. Among these, Ni stands out as it undergoes no structural phase transition under pressure. Here we have investigated the long-debated issue of pressure-induced magnetisation drop in Ni from first-principles. Our calculations confirm an abrupt quenching of magnetisation at high pressures, not associated with any structural phase transition. We find that the pressure substantially enhances the crystal field splitting of Ni-$3d$ orbitals, driving the system towards a new metallic phase violating the Stoner Criterion for ferromagnetic ordering. Analysing the charge populations in each spin channel, we show that the next nearest neighbour interactions play a crucial role in quenching ferromagnetic ordering in Ni and materials alike.
In a semimetal, both electron and hole carriers contribute to the density of states at the Fermi level. The small band overlaps and multi-band effects give rise to many novel electronic properties, such as relativistic Dirac fermions with linear dispersion, titanic magnetoresistance and unconventional superconductivity. Black phosphorus has recently emerged as an exceptional semiconductor with high carrier mobility and a direct, tunable bandgap. Of particular importance is the search for exotic electronic states in black phosphorus, which may amplify the materials potential beyond semiconductor devices. Here we show that a moderate hydrostatic pressure effectively suppresses the band gap and induces a Lifshitz transition from semiconductor to semimetal in black phosphorus; a colossal magnetoresistance is observed in the semimetallic phase. Quantum oscillations in high magnetic field reveal the complex Fermi surface topology of the semimetallic black phosphorus. In particular, a Dirac-like fermion emerges at around 1.2 GPa, which is continuously tuned by external pressure. The observed semi-metallic behavior greatly enriches black phosphoruss material property, and sets the stage for the exploration of novel electronic states in this material. Moreover, these interesting behaviors make phosphorene a good candidate for the realization of a new two-dimensional relativistic electron system, other than graphene.
Single crystalline samples of the van der Waals antiferromagnet CrPS4 were studied by measurements of specific heat and comprehensive anisotropic temperature- and magnetic field-dependent magnetization. In addition, measurements of the heat capacity and magnetization were performed under pressures of up to ~21 kbar and ~14 kbar respectively. At ambient pressure, two magnetic transitions are observed, second order from a paramagnetic to an antiferromagnetic state at TN ~ 37 K, and a first-order spin reorientation transition at T* ~ 34 K. Anisotropic H - T phase diagrams were constructed using the M(T,H) data. As pressure is increased, TN is weakly suppressed with dTN/dP ~ -0.1 K/kbar. T*, on the other hand, is suppressed quite rapidly, with dT*/dP ~ -2 K/kbar, extrapolating to a possible quantum phase transition at Pc ~ 15 kbar.