Do you want to publish a course? Click here

Multi-modal Multi-channel Target Speech Separation

109   0   0.0 ( 0 )
 Added by Rongzhi Gu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Target speech separation refers to extracting a target speakers voice from an overlapped audio of simultaneous talkers. Previously the use of visual modality for target speech separation has demonstrated great potentials. This work proposes a general multi-modal framework for target speech separation by utilizing all the available information of the target speaker, including his/her spatial location, voice characteristics and lip movements. Also, under this framework, we investigate on the fusion methods for multi-modal joint modeling. A factorized attention-based fusion method is proposed to aggregate the high-level semantic information of multi-modalities at embedding level. This method firstly factorizes the mixture audio into a set of acoustic subspaces, then leverages the targets information from other modalities to enhance these subspace acoustic embeddings with a learnable attention scheme. To validate the robustness of proposed multi-modal separation model in practical scenarios, the system was evaluated under the condition that one of the modalities is temporarily missing, invalid or corrupted. Experiments are conducted on a large-scale audio-visual dataset collected from YouTube (to be released) that spatialized by simulated room impulse responses (RIRs). Experiment results illustrate that our proposed multi-modal framework significantly outperforms single-modal and bi-modal speech separation approaches, while can still support real-time processing.



rate research

Read More

113 - Jian Wu , Zhuo Chen , Jinyu Li 2020
Multi-speaker speech recognition has been one of the keychallenges in conversation transcription as it breaks the singleactive speaker assumption employed by most state-of-the-artspeech recognition systems. Speech separation is consideredas a remedy to this problem. Previously, we introduced a sys-tem, calledunmixing,fixed-beamformerandextraction(UFE),that was shown to be effective in addressing the speech over-lap problem in conversation transcription. With UFE, an inputmixed signal is processed by fixed beamformers, followed by aneural network post filtering. Although promising results wereobtained, the system contains multiple individually developedmodules, leading potentially sub-optimum performance. In thiswork, we introduce an end-to-end modeling version of UFE. Toenable gradient propagation all the way, an attentional selectionmodule is proposed, where an attentional weight is learnt foreach beamformer and spatial feature sampled over space. Ex-perimental results show that the proposed system achieves com-parable performance in an offline evaluation with the originalseparate processing-based pipeline, while producing remark-able improvements in an online evaluation.
Hand-crafted spatial features (e.g., inter-channel phase difference, IPD) play a fundamental role in recent deep learning based multi-channel speech separation (MCSS) methods. However, these manually designed spatial features are hard to incorporate into the end-to-end optimized MCSS framework. In this work, we propose an integrated architecture for learning spatial features directly from the multi-channel speech waveforms within an end-to-end speech separation framework. In this architecture, time-domain filters spanning signal channels are trained to perform adaptive spatial filtering. These filters are implemented by a 2d convolution (conv2d) layer and their parameters are optimized using a speech separation objective function in a purely data-driven fashion. Furthermore, inspired by the IPD formulation, we design a conv2d kernel to compute the inter-channel convolution differences (ICDs), which are expected to provide the spatial cues that help to distinguish the directional sources. Evaluation results on simulated multi-channel reverberant WSJ0 2-mix dataset demonstrate that our proposed ICD based MCSS model improves the overall signal-to-distortion ratio by 10.4% over the IPD based MCSS model.
Target speech extraction has attracted widespread attention. When microphone arrays are available, the additional spatial information can be helpful in extracting the target speech. We have recently proposed a channel decorrelation (CD) mechanism to extract the inter-channel differential information to enhance the reference channel encoder representation. Although the proposed mechanism has shown promising results for extracting the target speech from mixtures, the extraction performance is still limited by the nature of the original decorrelation theory. In this paper, we propose two methods to broaden the horizon of the original channel decorrelation, by replacing the original softmax-based inter-channel similarity between encoder representations, using an unrolled probability and a normalized cosine-based similarity at the dimensional-level. Moreover, new combination strategies of the CD-based spatial information and target speaker adaptation of parallel encoder outputs are also investigated. Experiments on the reverberant WSJ0 2-mix show that the improved CD can result in more discriminative differential information and the new adaptation strategy is also very effective to improve the target speech extraction.
Previous studies have proven that integrating video signals, as a complementary modality, can facilitate improved performance for speech enhancement (SE). However, video clips usually contain large amounts of data and pose a high cost in terms of computational resources and thus may complicate the SE system. As an alternative source, a bone-conducted speech signal has a moderate data size while manifesting speech-phoneme structures, and thus complements its air-conducted counterpart. In this study, we propose a novel multi-modal SE structure in the time domain that leverages bone- and air-conducted signals. In addition, we examine two ensemble-learning-based strategies, early fusion (EF) and late fusion (LF), to integrate the two types of speech signals, and adopt a deep learning-based fully convolutional network to conduct the enhancement. The experiment results on the Mandarin corpus indicate that this newly presented multi-modal (integrating bone- and air-conducted signals) SE structure significantly outperforms the single-source SE counterparts (with a bone- or air-conducted signal only) in various speech evaluation metrics. In addition, the adoption of an LF strategy other than an EF in this novel SE multi-modal structure achieves better results.
The end-to-end approaches for single-channel target speech extraction have attracted widespread attention. However, the studies for end-to-end multi-channel target speech extraction are still relatively limited. In this work, we propose two methods for exploiting the multi-channel spatial information to extract the target speech. The first one is using a target speech adaptation layer in a parallel encoder architecture. The second one is designing a channel decorrelation mechanism to extract the inter-channel differential information to enhance the multi-channel encoder representation. We compare the proposed methods with two strong state-of-the-art baselines. Experimental results on the multi-channel reverberant WSJ0 2-mix dataset demonstrate that our proposed methods achieve up to 11.2% and 11.5% relative improvements in SDR and SiSDR respectively, which are the best reported results on this task to the best of our knowledge.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا