No Arabic abstract
Target speech extraction has attracted widespread attention. When microphone arrays are available, the additional spatial information can be helpful in extracting the target speech. We have recently proposed a channel decorrelation (CD) mechanism to extract the inter-channel differential information to enhance the reference channel encoder representation. Although the proposed mechanism has shown promising results for extracting the target speech from mixtures, the extraction performance is still limited by the nature of the original decorrelation theory. In this paper, we propose two methods to broaden the horizon of the original channel decorrelation, by replacing the original softmax-based inter-channel similarity between encoder representations, using an unrolled probability and a normalized cosine-based similarity at the dimensional-level. Moreover, new combination strategies of the CD-based spatial information and target speaker adaptation of parallel encoder outputs are also investigated. Experiments on the reverberant WSJ0 2-mix show that the improved CD can result in more discriminative differential information and the new adaptation strategy is also very effective to improve the target speech extraction.
The end-to-end approaches for single-channel target speech extraction have attracted widespread attention. However, the studies for end-to-end multi-channel target speech extraction are still relatively limited. In this work, we propose two methods for exploiting the multi-channel spatial information to extract the target speech. The first one is using a target speech adaptation layer in a parallel encoder architecture. The second one is designing a channel decorrelation mechanism to extract the inter-channel differential information to enhance the multi-channel encoder representation. We compare the proposed methods with two strong state-of-the-art baselines. Experimental results on the multi-channel reverberant WSJ0 2-mix dataset demonstrate that our proposed methods achieve up to 11.2% and 11.5% relative improvements in SDR and SiSDR respectively, which are the best reported results on this task to the best of our knowledge.
Target speech separation refers to extracting a target speakers voice from an overlapped audio of simultaneous talkers. Previously the use of visual modality for target speech separation has demonstrated great potentials. This work proposes a general multi-modal framework for target speech separation by utilizing all the available information of the target speaker, including his/her spatial location, voice characteristics and lip movements. Also, under this framework, we investigate on the fusion methods for multi-modal joint modeling. A factorized attention-based fusion method is proposed to aggregate the high-level semantic information of multi-modalities at embedding level. This method firstly factorizes the mixture audio into a set of acoustic subspaces, then leverages the targets information from other modalities to enhance these subspace acoustic embeddings with a learnable attention scheme. To validate the robustness of proposed multi-modal separation model in practical scenarios, the system was evaluated under the condition that one of the modalities is temporarily missing, invalid or corrupted. Experiments are conducted on a large-scale audio-visual dataset collected from YouTube (to be released) that spatialized by simulated room impulse responses (RIRs). Experiment results illustrate that our proposed multi-modal framework significantly outperforms single-modal and bi-modal speech separation approaches, while can still support real-time processing.
Recently, the end-to-end training approach for neural beamformer-supported multi-channel ASR has shown its effectiveness in multi-channel speech recognition. However, the integration of multiple modules makes it more difficult to perform end-to-end training, particularly given that the multi-channel speech corpus recorded in real environments with a sizeable data scale is relatively limited. This paper explores the usage of single-channel data to improve the multi-channel end-to-end speech recognition system. Specifically, we design three schemes to exploit the single-channel data, namely pre-training, data scheduling, and data simulation. Extensive experiments on CHiME4 and AISHELL-4 datasets demonstrate that all three methods improve the multi-channel end-to-end training stability and speech recognition performance, while the data scheduling approach keeps a much simpler pipeline (vs. pre-training) and less computation cost (vs. data simulation). Moreover, we give a thorough analysis of our systems, including how the performance is affected by the choice of front-end, the data augmentation, training strategy, and single-channel data size.
Multi-channel inputs offer several advantages over single-channel, to improve the robustness of on-device speech recognition systems. Recent work on multi-channel transformer, has proposed a way to incorporate such inputs into end-to-end ASR for improved accuracy. However, this approach is characterized by a high computational complexity, which prevents it from being deployed in on-device systems. In this paper, we present a novel speech recognition model, Multi-Channel Transformer Transducer (MCTT), which features end-to-end multi-channel training, low computation cost, and low latency so that it is suitable for streaming decoding in on-device speech recognition. In a far-field in-house dataset, our MCTT outperforms stagewise multi-channel models with transformer-transducer up to 6.01% relative WER improvement (WERR). In addition, MCTT outperforms the multi-channel transformer up to 11.62% WERR, and is 15.8 times faster in terms of inference speed. We further show that we can improve the computational cost of MCTT by constraining the future and previous context in attention computations.
Transformers are powerful neural architectures that allow integrating different modalities using attention mechanisms. In this paper, we leverage the neural transformer architectures for multi-channel speech recognition systems, where the spectral and spatial information collected from different microphones are integrated using attention layers. Our multi-channel transformer network mainly consists of three parts: channel-wise self attention layers (CSA), cross-channel attention layers (CCA), and multi-channel encoder-decoder attention layers (EDA). The CSA and CCA layers encode the contextual relationship within and between channels and across time, respectively. The channel-attended outputs from CSA and CCA are then fed into the EDA layers to help decode the next token given the preceding ones. The experiments show that in a far-field in-house dataset, our method outperforms the baseline single-channel transformer, as well as the super-directive and neural beamformers cascaded with the transformers.