Do you want to publish a course? Click here

Ground state Dirac bubbles and Killing spinors

71   0   0.0 ( 0 )
 Added by William Borrelli
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We prove a classification result for ground state solutions of the critical Dirac equation on $mathbb{R}^n$, $ngeq2$. By exploiting its conformal covariance, the equation can be posed on the round sphere $mathbb{S}^n$ and the non-zero solutions at the ground level are given by Killing spinors, up to conformal diffeomorphisms. Moreover, such ground state solutions of the critical Dirac equation are also related to the Yamabe equation for the sphere, for which we crucially exploit some known classification results.



rate research

Read More

We investigate instantons on manifolds with Killing spinors and their cones. Examples of manifolds with Killing spinors include nearly Kaehler 6-manifolds, nearly parallel G_2-manifolds in dimension 7, Sasaki-Einstein manifolds, and 3-Sasakian manifolds. We construct a connection on the tangent bundle over these manifolds which solves the instanton equation, and also show that the instanton equation implies the Yang-Mills equation, despite the presence of torsion. We then construct instantons on the cones over these manifolds, and lift them to solutions of heterotic supergravity. Amongst our solutions are new instantons on even-dimensional Euclidean spaces, as well as the well-known BPST, quaternionic and octonionic instantons.
We prove smoothness and provide the asymptotic behavior at infinity of solutions of Dirac-Einstein equations on $mathbb{R}^3$, which appear in the bubbling analysis of conformal Dirac-Einstein equations on spin 3-manifolds. Moreover, we classify ground state solutions, proving that the scalar part is given by Aubin-Talenti functions, while the spinorial part is the conformal image of $-frac{1}{2}$-Killing spinors on the round sphere $mathbb{S}^3$.
The seven and nine dimensional geometries associated with certain classes of supersymmetric $AdS_3$ and $AdS_2$ solutions of type IIB and D=11 supergravity, respectively, have many similarities with Sasaki-Einstein geometry. We further elucidate their properties and also generalise them to higher odd dimensions by introducing a new class of complex geometries in $2n+2$ dimensions, specified by a Riemannian metric, a scalar field and a closed three-form, which admit a particular kind of Killing spinor. In particular, for $nge 3$, we show that when the geometry in $2n+2$ dimensions is a cone we obtain a class of geometries in $2n+1$ dimensions, specified by a Riemannian metric, a scalar field and a closed two-form, which includes the seven and nine-dimensional geometries mentioned above when $n=3,4$, respectively. We also consider various ansatz for the geometries and construct infinite classes of explicit examples for all $n$.
In a previous article we proved a lower bound for the spectrum of the Dirac operator on quaternionic Kaehler manifolds. In the present article we study the limiting case, i. e. manifolds where the lower bound is attained as an eigenvalue. We give an equivalent formulation in terms of a quaternionic Killing equation and show that the only symmetric quaternionic Kaehler manifolds with smallest possible eigenvalue are the quaternionic projective spaces.
We construct the propagator of the massless Dirac operator $W$ on a closed Riemannian 3-manifold as the sum of two invariantly defined oscillatory integrals, global in space and in time, with distinguished complex-valued phase functions. The two oscillatory integrals -- the positive and the negative propagators -- correspond to positive and negative eigenvalues of $W$, respectively. This enables us to provide a global invariant definition of the full symbols of the propagators (scalar matrix-functions on the cotangent bundle), a closed formula for the principal symbols and an algorithm for the explicit calculation of all their homogeneous components. Furthermore, we obtain small time expansions for principal and subprincipal symbols of the propagators in terms of geometric invariants. Lastly, we use our results to compute the third local Weyl coefficients in the asymptotic expansion of the eigenvalue counting functions of $W$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا