Do you want to publish a course? Click here

Global propagator for the massless Dirac operator and spectral asymptotics

131   0   0.0 ( 0 )
 Added by Dmitri Vassiliev
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct the propagator of the massless Dirac operator $W$ on a closed Riemannian 3-manifold as the sum of two invariantly defined oscillatory integrals, global in space and in time, with distinguished complex-valued phase functions. The two oscillatory integrals -- the positive and the negative propagators -- correspond to positive and negative eigenvalues of $W$, respectively. This enables us to provide a global invariant definition of the full symbols of the propagators (scalar matrix-functions on the cotangent bundle), a closed formula for the principal symbols and an algorithm for the explicit calculation of all their homogeneous components. Furthermore, we obtain small time expansions for principal and subprincipal symbols of the propagators in terms of geometric invariants. Lastly, we use our results to compute the third local Weyl coefficients in the asymptotic expansion of the eigenvalue counting functions of $W$.



rate research

Read More

The Dirac equation in $mathbb{R}^{1,3}$ with potential Z/r is a relativistic field equation modeling the hydrogen atom. We analyze the singularity structure of the propagator for this equation, showing that the singularities of the Schwartz kernel of the propagator are along an expanding spherical wave away from rays that miss the potential singularity at the origin, but also may include an additional spherical wave of diffracted singularities emanating from the origin. This diffracted wavefront is 1-0 derivatives smoother than the main singularities and is a conormal singularity.
We study the propagator of the wave equation on a closed Riemannian manifold $M$. We propose a geometric approach to the construction of the propagator as a single oscillatory integral global both in space and in time with a distinguished complex-valued phase function. This enables us to provide a global invariant definition of the full symbol of the propagator - a scalar function on the cotangent bundle - and an algorithm for the explicit calculation of its homogeneous components. The central part of the paper is devoted to the detailed analysis of the subprincipal symbol; in particular, we derive its explicit small time asymptotic expansion. We present a general geometric construction that allows one to visualise topological obstructions and describe their circumvention with the use of a complex-valued phase function. We illustrate the general framework with explicit examples in dimension two.
We prove sharp pointwise decay estimates for critical Dirac equations on $mathbb{R}^n$ with $ngeq 2$. They appear for instance in the study of critical Dirac equations on compact spin manifolds, describing blow-up profiles, and as effective equations in honeycomb structures. For the latter case, we find excited states with an explicit asymptotic behavior. Moreover, we provide some classification results both for ground states and for excited states.
We prove a classification result for ground state solutions of the critical Dirac equation on $mathbb{R}^n$, $ngeq2$. By exploiting its conformal covariance, the equation can be posed on the round sphere $mathbb{S}^n$ and the non-zero solutions at the ground level are given by Killing spinors, up to conformal diffeomorphisms. Moreover, such ground state solutions of the critical Dirac equation are also related to the Yamabe equation for the sphere, for which we crucially exploit some known classification results.
In this work we consider the two-dimensional Dirac operator with general local singular interactions supported on a closed curve. A systematic study of the interaction is performed by decomposing it into a linear combination of four elementary interactions: electrostatic, Lorentz scalar, magnetic, and a fourth one which can be absorbed by using unitary transformations. We address the self-adjointness and the spectral description of the underlying Dirac operator, and moreover we describe its approximation by Dirac operators with regular potentials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا