In a previous article we proved a lower bound for the spectrum of the Dirac operator on quaternionic Kaehler manifolds. In the present article we study the limiting case, i. e. manifolds where the lower bound is attained as an eigenvalue. We give an equivalent formulation in terms of a quaternionic Killing equation and show that the only symmetric quaternionic Kaehler manifolds with smallest possible eigenvalue are the quaternionic projective spaces.
We collect our recent results ([5] and [8]) and we get the equivalence of the three notions of the title under some conditions. We then use this equivalence in order to prove some consequences about Sasakian manifolds, complex almost contact structures and complex k-contact structures.
We investigate instantons on manifolds with Killing spinors and their cones. Examples of manifolds with Killing spinors include nearly Kaehler 6-manifolds, nearly parallel G_2-manifolds in dimension 7, Sasaki-Einstein manifolds, and 3-Sasakian manifolds. We construct a connection on the tangent bundle over these manifolds which solves the instanton equation, and also show that the instanton equation implies the Yang-Mills equation, despite the presence of torsion. We then construct instantons on the cones over these manifolds, and lift them to solutions of heterotic supergravity. Amongst our solutions are new instantons on even-dimensional Euclidean spaces, as well as the well-known BPST, quaternionic and octonionic instantons.
A supermanifold M is canonically associated to any pseudo Riemannian spin manifold (M_0,g_0). Extending the metric g_0 to a field g of bilinear forms g(p) on T_p M, pin M_0, the pseudo Riemannian supergeometry of (M,g) is formulated as G-structure on M, where G is a supergroup with even part G_0cong Spin(k,l); (k,l) the signature of (M_0,g_0). Killing vector fields on (M,g) are, by definition, infinitesimal automorphisms of this G-structure. For every spinor field s there exists a corresponding odd vector field X_s on M. Our main result is that X_s is a Killing vector field on (M,g) if and only if s is a twistor spinor. In particular, any Killing spinor s defines a Killing vector field X_s.
We present a result for non-compact manifolds with invertible Dirac operator, where we link the presence of a massless Killing spinor, with a harmonic, closed conformal Killing-Yano tensor, if one exists for the specic manifold. A couple of examples are introduced.