No Arabic abstract
Disinformation continues to attract attention due to its increasing threat to society. Nevertheless, a disinformation-based attack on critical infrastructure has never been studied to date. Here, we consider traffic networks and focus on fake information that manipulates drivers decisions to create congestion. We study the optimization problem faced by the adversary when choosing which streets to target to maximize disruption. We prove that finding an optimal solution is computationally intractable, implying that the adversary has no choice but to settle for suboptimal heuristics. We analyze one such heuristic, and compare the cases when targets are spread across the city of Chicago vs. concentrated in its business district. Surprisingly, the latter results in more far-reaching disruption, with its impact felt as far as 2 kilometers from the closest target. Our findings demonstrate that vulnerabilities in critical infrastructure may arise not only from hardware and software, but also from behavioral manipulation.
Adversarial attacks have been alerting the artificial intelligence community recently, since many machine learning algorithms were found vulnerable to malicious attacks. This paper studies adversarial attacks to scale-free networks to test their robustness in terms of statistical measures. In addition to the well-known random link rewiring (RLR) attack, two heuristic attacks are formulated and simulated: degree-addition-based link rewiring (DALR) and degree-interval-based link rewiring (DILR). These three strategies are applied to attack a number of strong scale-free networks of various sizes generated from the Barabasi-Albert model. It is found that both DALR and DILR are more effective than RLR, in the sense that rewiring a smaller number of links can succeed in the same attack. However, DILR is as concealed as RLR in the sense that they both are constructed by introducing a relatively small number of changes on several typical structural properties such as average shortest path-length, average clustering coefficient, and average diagonal distance. The results of this paper suggest that to classify a network to be scale-free has to be very careful from the viewpoint of adversarial attack effects.
Empirical estimation of critical points at which complex systems abruptly flip from one state to another is among the remaining challenges in network science. However, due to the stochastic nature of critical transitions it is widely believed that critical points are difficult to estimate, and it is even more difficult, if not impossible, to predict the time such transitions occur [1-4]. We analyze a class of decaying dynamical networks experiencing persistent attacks in which the magnitude of the attack is quantified by the probability of an internal failure, and there is some chance that an internal failure will be permanent. When the fraction of active neighbors declines to a critical threshold, cascading failures trigger a network breakdown. For this class of network we find both numerically and analytically that the time to the network breakdown, equivalent to the network lifetime, is inversely dependent upon the magnitude of the attack and logarithmically dependent on the threshold. We analyze how permanent attacks affect dynamical network robustness and use the network lifetime as a measure of dynamical network robustness offering new methodological insight into system dynamics.
Social technologies have made it possible to propagate disinformation and manipulate the masses at an unprecedented scale. This is particularly alarming from a security perspective, as humans have proven to be the weakest link when protecting critical infrastructure in general, and the power grid in particular. Here, we consider an attack in which an adversary attempts to manipulate the behavior of energy consumers by sending fake discount notifications encouraging them to shift their consumption into the peak-demand period. We conduct surveys to assess the propensity of people to follow-through on such notifications and forward them to their friends. This allows us to model how the disinformation propagates through social networks. Finally, using Greater London as a case study, we show that disinformation can indeed be used to orchestrate an attack wherein unwitting consumers synchronize their energy-usage patterns, resulting in blackouts on a city-scale. These findings demonstrate that in an era when disinformation can be weaponized, system vulnerabilities arise not only from the hardware and software of critical infrastructure, but also from the behavior of the consumers.
Terrorists use violence in pursuit of political goals. While terror often has severe consequences for victims, it remains an open question how terror attacks affect the general population. We study the behavioral response of citizens of cities affected by $7$ different terror attacks. We compare real-time mobile communication patterns in the first $24$ hours following a terror attack to the corresponding patterns on days with no terror attack. On ordinary days, the group of female and male participants have different activity patterns. Following a terror attack, however, we observe a significant increase of the gender differences. Knowledge about citizens behavior response patterns following terror attacks may have important implications for the public response during and after an attack.
In a graph, a community may be loosely defined as a group of nodes that are more closely connected to one another than to the rest of the graph. While there are a variety of metrics that can be used to specify the quality of a given community, one common theme is that flows tend to stay within communities. Hence, we expect cycles to play an important role in community detection. For undirected graphs, the importance of triangles -- an undirected 3-cycle -- has been known for a long time and can be used to improve community detection. In directed graphs, the situation is more nuanced. The smallest cycle is simply two nodes with a reciprocal connection, and using information about reciprocation has proven to improve community detection. Our new idea is based on the four types of directed triangles that contain cycles. To identify communities in directed networks, then, we propose an undirected edge-weighting scheme based on the type of the directed triangles in which edges are involved. We also propose a new metric on quality of the communities that is based on the number of 3-cycles that are split across communities. To demonstrate the impact of our new weighting, we use the standard METIS graph partitioning tool to determine communities and show experimentally that the resulting communities result in fewer 3-cycles being cut. The magnitude of the effect varies between a 10 and 50% reduction, and we also find evidence that this weighting scheme improves a task where plausible ground-truth communities are known.