Do you want to publish a course? Click here

Using Triangles to Improve Community Detection in Directed Networks

184   0   0.0 ( 0 )
 Added by Christine Klymko
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

In a graph, a community may be loosely defined as a group of nodes that are more closely connected to one another than to the rest of the graph. While there are a variety of metrics that can be used to specify the quality of a given community, one common theme is that flows tend to stay within communities. Hence, we expect cycles to play an important role in community detection. For undirected graphs, the importance of triangles -- an undirected 3-cycle -- has been known for a long time and can be used to improve community detection. In directed graphs, the situation is more nuanced. The smallest cycle is simply two nodes with a reciprocal connection, and using information about reciprocation has proven to improve community detection. Our new idea is based on the four types of directed triangles that contain cycles. To identify communities in directed networks, then, we propose an undirected edge-weighting scheme based on the type of the directed triangles in which edges are involved. We also propose a new metric on quality of the communities that is based on the number of 3-cycles that are split across communities. To demonstrate the impact of our new weighting, we use the standard METIS graph partitioning tool to determine communities and show experimentally that the resulting communities result in fewer 3-cycles being cut. The magnitude of the effect varies between a 10 and 50% reduction, and we also find evidence that this weighting scheme improves a task where plausible ground-truth communities are known.



rate research

Read More

Community detection and link prediction are both of great significance in network analysis, which provide very valuable insights into topological structures of the network from different perspectives. In this paper, we propose a novel community detection algorithm with inclusion of link prediction, motivated by the question whether link prediction can be devoted to improving the accuracy of community partition. For link prediction, we propose two novel indices to compute the similarity between each pair of nodes, one of which aims to add missing links, and the other tries to remove spurious edges. Extensive experiments are conducted on benchmark data sets, and the results of our proposed algorithm are compared with two classes of baseline. In conclusion, our proposed algorithm is competitive, revealing that link prediction does improve the precision of community detection.
A distinguishing property of communities in networks is that cycles are more prevalent within communities than across communities. Thus, the detection of these communities may be aided through the incorporation of measures of the local richness of the cyclic structure. In this paper, we introduce renewal non-backtracking random walks (RNBRW) as a way of quantifying this structure. RNBRW gives a weight to each edge equal to the probability that a non-backtracking random walk completes a cycle with that edge. Hence, edges with larger weights may be thought of as more important to the formation of cycles. Of note, since separate random walks can be performed in parallel, RNBRW weights can be estimated very quickly, even for large graphs. We give simulation results showing that pre-weighting edges through RNBRW may substantially improve the performance of common community detection algorithms. Our results suggest that RNBRW is especially efficient for the challenging case of detecting communities in sparse graphs.
We introduce a new paradigm that is important for community detection in the realm of network analysis. Networks contain a set of strong, dominant communities, which interfere with the detection of weak, natural community structure. When most of the members of the weak communities also belong to stronger communities, they are extremely hard to be uncovered. We call the weak communities the hidden community structure. We present a novel approach called HICODE (HIdden COmmunity DEtection) that identifies the hidden community structure as well as the dominant community structure. By weakening the strength of the dominant structure, one can uncover the hidden structure beneath. Likewise, by reducing the strength of the hidden structure, one can more accurately identify the dominant structure. In this way, HICODE tackles both tasks simultaneously. Extensive experiments on real-world networks demonstrate that HICODE outperforms several state-of-the-art community detection methods in uncovering both the dominant and the hidden structure. In the Facebook university social networks, we find multiple non-redundant sets of communities that are strongly associated with residential hall, year of registration or career position of the faculties or students, while the state-of-the-art algorithms mainly locate the dominant ground truth category. In the Due to the difficulty of labeling all ground truth communities in real-world datasets, HICODE provides a promising approach to pinpoint the existing latent communities and uncover communities for which there is no ground truth. Finding this unknown structure is an extremely important community detection problem.
108 - Jingfei Zhang , Yuguo Chen 2018
Heterogeneous networks are networks consisting of different types of nodes and multiple types of edges linking such nodes. While community detection has been extensively developed as a useful technique for analyzing networks that contain only one type of nodes, very few community detection techniques have been developed for heterogeneous networks. In this paper, we propose a modularity based community detection framework for heterogeneous networks. Unlike existing methods, the proposed approach has the flexibility to treat the number of communities as an unknown quantity. We describe a Louvain type maximization method for finding the community structure that maximizes the modularity function. Our simulation results show the advantages of the proposed method over existing methods. Moreover, the proposed modularity function is shown to be consistent under a heterogeneous stochastic blockmodel framework. Analyses of the DBLP four-area dataset and a MovieLens dataset demonstrate the usefulness of the proposed method.
There has been a surge of interest in community detection in homogeneous single-relational networks which contain only one type of nodes and edges. However, many real-world systems are naturally described as heterogeneous multi-relational networks which contain multiple types of nodes and edges. In this paper, we propose a new method for detecting communities in such networks. Our method is based on optimizing the composite modularity, which is a new modularity proposed for evaluating partitions of a heterogeneous multi-relational network into communities. Our method is parameter-free, scalable, and suitable for various networks with general structure. We demonstrate that it outperforms the state-of-the-art techniques in detecting pre-planted communities in synthetic networks. Applied to a real-world Digg network, it successfully detects meaningful communities.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا