No Arabic abstract
We prove lifting theorems for complex representations $V$ of finite groups $G$. Let $sigma=(sigma_1,dots,sigma_n)$ be a minimal system of homogeneous basic invariants and let $d$ be their maximal degree. We prove that any continuous map $overline{f} colon {mathbb R}^m to V$ such that $f = sigma circ overline{f}$ is of class $C^{d-1,1}$ is locally of Sobolev class $W^{1,p}$ for all $1 le p<d/(d-1)$. In the case $m=1$ there always exists a continuous choice $overline{f}$ for given $fcolon {mathbb R} to sigma(V) subseteq {mathbb C}^n$. We give uniform bounds for the $W^{1,p}$-norm of $overline{f}$ in terms of the $C^{d-1,1}$-norm of $f$. The result is optimal: in general a lifting $overline{f}$ cannot have a higher Sobolev regularity and it even might not have bounded variation if $f$ is in a larger Holder class.
We give a new proof of Aubins improvement of the Sobolev inequality on $mathbb{S}^{n}$ under the vanishing of first order moments of the area element and generalize it to higher order moments case. By careful study of an extremal problem on $mathbb{S}^{n}$, we determine the constant explicitly in the second order moments case.
We discuss $C^1$ regularity and developability of isometric immersions of flat domains into $mathbb R^3$ enjoying a local fractional Sobolev $W^{1+s, frac2s}$ regularity for $2/3 le s< 1 $, generalizing the known results on Sobolev and Holder regimes. Ingredients of the proof include analysis of the weak Codazzi-Mainardi equations of the isometric immersions and study of $W^{2,frac2s}$ planar deformations with symmetric Jacobian derivative and vanishing distributional Jacobian determinant. On the way, we also show that the distributional Jacobian determinant, conceived as an operator defined on the Jacobian matrix, behaves like determinant of gradient matrices under products by scalar functions.
We prove ultradifferentiable Chevelley restriction theorems for a wide range of ultradifferentiable classes. As a special case we find that isotropic functions, i.e., functions defined on the vector space of real symmetric matrices invariant under the action of the special orthogonal group by conjugation, possess some ultradifferentiable regularity if and only if their restriction to diagonal matrices has the same regularity.
Let $X$ be a ball Banach function space on ${mathbb R}^n$. In this article, under the mild assumption that the Hardy--Littlewood maximal operator is bounded on the associated space $X$ of $X$, the authors prove that, for any $fin C_{mathrm{c}}^2({mathbb R}^n)$, $$sup_{lambdain(0,infty)}lambdaleft |left|left{yin{mathbb R}^n: |f(cdot)-f(y)| >lambda|cdot-y|^{frac{n}{q}+1}right}right|^{frac{1}{q}} right|_Xsim | abla f|_X$$ with the positive equivalence constants independent of $f$, where $qin(0,infty)$ is an index depending on the space $X$, and $|E|$ denotes the Lebesgue measure of a measurable set $Esubset {mathbb R}^n$. Particularly, when $X:=L^p({mathbb R}^n)$ with $pin [1,infty)$, the above estimate holds true for any given $qin [1, p]$, which when $q=p$ is exactly the recent surprising formula of H. Brezis, J. Van Schaftingen, and P.-L. Yung, and which even when $q< p$ is new. This generalization has a wide range of applications and, particularly, enables the authors to establish new fractional Sobolev and Gagliardo--Nirenberg inequalities in various function spaces, including Morrey spaces, mixed-norm Lebesgue spaces, variable Lebesgue spaces, weighted Lebesgue spaces, Orlicz spaces, and Orlicz-slice (generalized amalgam) spaces, and, even in all these special cases, the obtained results are new. The proofs of these results strongly depend on the Poincare inequality, the extrapolation, the exact operator norm on $X$ of the Hardy--Littlewood maximal operator, and the geometry of $mathbb{R}^n.$
We study weighted Poincare and Poincare-Sobolev type inequalities with an explicit analysis on the dependence on the $A_p$ constants of the involved weights. We obtain inequalities of the form $$ left (frac{1}{w(Q)}int_Q|f-f_Q|^{q}wright )^frac{1}{q}le C_well(Q)left (frac{1}{w(Q)}int_Q | abla f|^p wright )^frac{1}{p}, $$ with different quantitative estimates for both the exponent $q$ and the constant $C_w$. We will derive those estimates together with a large variety of related results as a consequence of a general selfimproving property shared by functions satisfying the inequality $$ frac{1}{|Q|}int_Q |f-f_Q| dmu le a(Q), $$ for all cubes $Qsubsetmathbb{R}^n$ and where $a$ is some functional that obeys a specific discrete geometrical summability condition. We introduce a Sobolev-type exponent $p^*_w>p$ associated to the weight $w$ and obtain further improvements involving $L^{p^*_w}$ norms on the left hand side of the inequality above. For the endpoint case of $A_1$ weights we reach the classical critical Sobolev exponent $p^*=frac{pn}{n-p}$ which is the largest possible and provide different type of quantitative estimates for $C_w$. We also show that this best possible estimate cannot hold with an exponent on the $A_1$ constant smaller than $1/p$. We also provide an argument based on extrapolation ideas showing that there is no $(p,p)$, $pgeq1$, Poincare inequality valid for the whole class of $RH_infty$ weights by showing their intimate connection with the failure of Poincare inequalities, $(p,p)$ in the range $0<p<1$.