Do you want to publish a course? Click here

Ultradifferentiable Chevalley theorems and isotropic functions

70   0   0.0 ( 0 )
 Added by Armin Rainer
 Publication date 2019
  fields
and research's language is English
 Authors Armin Rainer




Ask ChatGPT about the research

We prove ultradifferentiable Chevelley restriction theorems for a wide range of ultradifferentiable classes. As a special case we find that isotropic functions, i.e., functions defined on the vector space of real symmetric matrices invariant under the action of the special orthogonal group by conjugation, possess some ultradifferentiable regularity if and only if their restriction to diagonal matrices has the same regularity.



rate research

Read More

We develop real Paley-Wiener theorems for classes ${mathcal S}_omega$ of ultradifferentiable functions and related $L^{p}$-spaces in the spirit of Bang and Andersen for the Schwartz class. We introduce results of this type for the so-called Gabor transform and give a full characterization in terms of Fourier and Wigner transforms for several variables of a Paley-Wiener theorem in this general setting, which is new in the literature. We also analyze this type of results when the support of the function is not compact using polynomials. Some examples are given.
We discuss the concept of inner function in reproducing kernel Hilbert spaces with an orthogonal basis of monomials and examine connections between inner functions and optimal polynomial approximants to $1/f$, where $f$ is a function in the space. We revisit some classical examples from this perspective, and show how a construction of Shapiro and Shields can be modified to produce inner functions.
We prove lifting theorems for complex representations $V$ of finite groups $G$. Let $sigma=(sigma_1,dots,sigma_n)$ be a minimal system of homogeneous basic invariants and let $d$ be their maximal degree. We prove that any continuous map $overline{f} colon {mathbb R}^m to V$ such that $f = sigma circ overline{f}$ is of class $C^{d-1,1}$ is locally of Sobolev class $W^{1,p}$ for all $1 le p<d/(d-1)$. In the case $m=1$ there always exists a continuous choice $overline{f}$ for given $fcolon {mathbb R} to sigma(V) subseteq {mathbb C}^n$. We give uniform bounds for the $W^{1,p}$-norm of $overline{f}$ in terms of the $C^{d-1,1}$-norm of $f$. The result is optimal: in general a lifting $overline{f}$ cannot have a higher Sobolev regularity and it even might not have bounded variation if $f$ is in a larger Holder class.
We generalize both the notion of polynomial functions on Lie groups and the notion of horizontally affine maps on Carnot groups. We fix a subset $S$ of the algebra $mathfrak g$ of left-invariant vector fields on a Lie group $mathbb G$ and we assume that $S$ Lie generates $mathfrak g$. We say that a function $f:mathbb Gto mathbb R$ (or more generally a distribution on $mathbb G$) is $S$-polynomial if for all $Xin S$ there exists $kin mathbb N$ such that the iterated derivative $X^k f$ is zero in the sense of distributions. First, we show that all $S$-polynomial functions (as well as distributions) are represented by analytic functions and, if the exponent $k$ in the previous definition is independent on $Xin S$, they form a finite-dimensional vector space. Second, if $mathbb G$ is connected and nilpotent we show that $S$-polynomial functions are polynomial functions in the sense of Leibman. The same result may not be true for non-nilpotent groups. Finally, we show that in connected nilpotent Lie groups, being polynomial in the sense of Leibman, being a polynomial in exponential chart, and the vanishing of mixed derivatives of some fixed degree along directions of $mathfrak g$ are equivalent notions.
We consider discrete Dirac systems as an alternative (to the famous SzegH{o} recurrencies and matrix orthogonal polynomials) approach to the study of the corresponding block Toeplitz matrices. We prove an analog of the Christoffel--Darboux formula and derive the asymptotic relations for the analog of reproducing kernel (using Weyl--Titchmarsh functions of discrete Dirac systems). We study also the case of rational Weyl--Titchmarsh functions (and GBDT version of the Backlund-Darboux transformation of the trivial discrete Dirac system). We show that block diagonal plus block semi-separable Toeplitz matrices appear in this case.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا