Do you want to publish a course? Click here

Accelerating Generalized Benders Decomposition for Wireless Resource Allocation

295   0   0.0 ( 0 )
 Added by Mengyuan Lee
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Generalized Benders decomposition (GBD) is a globally optimal algorithm for mixed integer nonlinear programming (MINLP) problems, which are NP-hard and can be widely found in the area of wireless resource allocation. The main idea of GBD is decomposing an MINLP problem into a primal problem and a master problem, which are iteratively solved until their solutions converge. However, a direct implementation of GBD is time- and memory-consuming. The main bottleneck is the high complexity of the master problem, which increases over the iterations. Therefore, we propose to leverage machine learning (ML) techniques to accelerate GBD aiming at decreasing the complexity of the master problem. Specifically, we utilize two different ML techniques, classification and regression, to deal with this acceleration task. In this way, a cut classifier and a cut regressor are learned, respectively, to distinguish between useful and useless cuts. Only useful cuts are added to the master problem and thus the complexity of the master problem is reduced. By using a resource allocation problem in device-to-device communication networks as an example, we validate that the proposed method can reduce the computational complexity of GBD without loss of optimality and has strong generalization ability. The proposed method is applicable for solving various MINLP problems in wireless networks since the designs are invariant for different problems.



rate research

Read More

77 - Mengyuan Lee , Guanding Yu , 2019
Resource allocation in wireless networks, such as device-to-device (D2D) communications, is usually formulated as mixed integer nonlinear programming (MINLP) problems, which are generally NP-hard and difficult to get the optimal solutions. Traditional methods to solve these MINLP problems are all based on mathematical optimization techniques, such as the branch-and-bound (B&B) algorithm that converges slowly and has forbidding complexity for real-time implementation. Therefore, machine leaning (ML) has been used recently to address the MINLP problems in wireless communications. In this paper, we use imitation learning method to accelerate the B&B algorithm. With invariant problem-independent features and appropriate problem-dependent feature selection for D2D communications, a good auxiliary prune policy can be learned in a supervised manner to speed up the most time-consuming branch process of the B&B algorithm. Moreover, we develop a mixed training strategy to further reinforce the generalization ability and a deep neural network (DNN) with a novel loss function to achieve better dynamic control over optimality and computational complexity. Extensive simulation demonstrates that the proposed method can achieve good optimality and reduce computational complexity simultaneously.
In federated learning (FL), devices contribute to the global training by uploading their local model updates via wireless channels. Due to limited computation and communication resources, device scheduling is crucial to the convergence rate of FL. In this paper, we propose a joint device scheduling and resource allocation policy to maximize the model accuracy within a given total training time budget for latency constrained wireless FL. A lower bound on the reciprocal of the training performance loss, in terms of the number of training rounds and the number of scheduled devices per round, is derived. Based on the bound, the accuracy maximization problem is solved by decoupling it into two sub-problems. First, given the scheduled devices, the optimal bandwidth allocation suggests allocating more bandwidth to the devices with worse channel conditions or weaker computation capabilities. Then, a greedy device scheduling algorithm is introduced, which in each step selects the device consuming the least updating time obtained by the optimal bandwidth allocation, until the lower bound begins to increase, meaning that scheduling more devices will degrade the model accuracy. Experiments show that the proposed policy outperforms state-of-the-art scheduling policies under extensive settings of data distributions and cell radius.
Edge machine learning involves the development of learning algorithms at the network edge to leverage massive distributed data and computation resources. Among others, the framework of federated edge learning (FEEL) is particularly promising for its data-privacy preservation. FEEL coordinates global model training at a server and local model training at edge devices over wireless links. In this work, we explore the new direction of energy-efficient radio resource management (RRM) for FEEL. To reduce devices energy consumption, we propose energy-efficient strategies for bandwidth allocation and scheduling. They adapt to devices channel states and computation capacities so as to reduce their sum energy consumption while warranting learning performance. In contrast with the traditional rate-maximization designs, the derived optimal policies allocate more bandwidth to those scheduled devices with weaker channels or poorer computation capacities, which are the bottlenecks of synchronized model updates in FEEL. On the other hand, the scheduling priority function derived in closed form gives preferences to devices with better channels and computation capacities. Substantial energy reduction contributed by the proposed strategies is demonstrated in learning experiments.
We integrate a wireless powered communication network with a cooperative cognitive radio network, where multiple secondary users (SUs) powered wirelessly by a hybrid access point (HAP) help a primary user relay the data. As a reward for the cooperation, the secondary network gains the spectrum access where SUs transmit to HAP using time division multiple access. To maximize the sum-throughput of SUs, we present a secondary sum-throughput optimal resource allocation (STORA) scheme. Under the constraint of meeting target primary rate, the STORA scheme chooses the optimal set of relaying SUs and jointly performs the time and energy allocation for SUs. Specifically, by exploiting the structure of the optimal solution, we find the order in which SUs are prioritized to relay primary data. Since the STORA scheme focuses on the sum-throughput, it becomes inconsiderate towards individual SU throughput, resulting in low fairness. To enhance fairness, we investigate three resource allocation schemes, which are (i) equal time allocation, (ii) minimum throughput maximization, and (iii) proportional time allocation. Simulation results reveal the trade-off between sum-throughput and fairness. The minimum throughput maximization scheme is the fairest one as each SU gets the same throughput, but yields the least SU sum-throughput.
We consider a fully-loaded ground wireless network supporting unmanned aerial vehicle (UAV) transmission services. To enable the overload transmissions to a ground user (GU) and a UAV, two transmission schemes are employed, namely non-orthogonal multiple access (NOMA) and relaying, depending on whether or not the GU and UAV are served simultaneously. Under the assumption of the system operating with infinite blocklength (IBL) codes, the IBL throughputs of both the GU and the UAV are derived under the two schemes. More importantly, we also consider the scenario in which data packets are transmitted via finite blocklength (FBL) codes, i.e., data transmission to both the UAV and the GU is performed under low-latency and high reliability constraints. In this setting, the FBL throughputs are characterized again considering the two schemes of NOMA and relaying. Following the IBL and FBL throughput characterizations, optimal resource allocation designs are subsequently proposed to maximize the UAV throughput while guaranteeing the throughput of the cellular user.Moreover, we prove that the relaying scheme is able to provide transmission service to the UAV while improving the GUs performance, and that the relaying scheme potentially offers a higher throughput to the UAV in the FBL regime than in the IBL regime. On the other hand, the NOMA scheme provides a higher UAV throughput (than relaying) by slightly sacrificing the GUs performance.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا