No Arabic abstract
We study the influence of epitaxial strain on the electronic properties of InAs/GaSb composite quantum wells (CQWs), host structures for quantum spin Hall insulators, by transport measurements and eight-band $mathbf{kcdot p}$ calculations. Using different substrates and buffer layer structures for crystal growth, we prepare two types of samples with vastly different strain conditions. CQWs with a nearly strain-free GaSb layer exhibit a resistance peak at the charge neutrality point that reflects the opening of a topological gap in the band-inverted regime. In contrast, for CQWs with 0.50% biaxial tensile strain in the GaSb layer, semimetallic behavior indicating a gap closure is found for the same degree of band inversion. Additionally, with the tensile strain, the boundary between the topological and nontopological regimes is located at a larger InAs thickness. Eight-band $mathbf{kcdot p}$ calculations reveal that tensile strain in GaSb not only shifts the phase boundary but also significantly modifies the band structure, which can result in the closure of an indirect gap and make the system semimetallic even in the topological regime. Our results thus provide a global picture of the topological-nontopological phase diagram as a function of layer thicknesses and strain.
The quantum anomalous Hall effect has recently been observed experimentally in thin films of Cr doped (Bi,Sb)$_2$Te$_3$ at a low temperature ($sim$ 30mK). In this work, we propose realizing the quantum anomalous Hall effect in more conventional diluted magnetic semiconductors with doped InAs/GaSb type II quantum wells. Based on a four band model, we find an enhancement of the Curie temperature of ferromagnetism due to band edge singularities in the inverted regime of InAs/GaSb quantum wells. Below the Curie temperature, the quantum anomalous Hall effect is confirmed by the direct calculation of Hall conductance. The parameter regime for the quantum anomalous Hall phase is identified based on the eight-band Kane model. The high sample quality and strong exchange coupling make magnetically doped InAs/GaSb quantum wells good candidates for realizing the quantum anomalous Hall insulator at a high temperature.
Transport measurements are performed on InAs/GaSb double quantum wells at zero and finite magnetic fields applied parallel and perpendicular to the quantum wells. We investigate a sample in the inverted regime where electrons and holes coexist, and compare it with another sample in the non-inverted semiconducting regime. Activated behavior in conjunction with a strong suppression of the resistance peak at the charge neutrality point in a parallel magnetic field attest to the topological hybridization gap between electron and hole bands in the inverted sample. We observe an unconventional Landau level spectrum with energy gaps modulated by the magnetic field applied perpendicular to the quantum wells. This is caused by strong spin-orbit interaction provided jointly by the InAs and the GaSb quantum wells.
We report transport measurements of strained InAs/In$_{x}$Ga$_{1-x}$Sb composite quantum wells (CQWs) in the quantum spin Hall phase, focusing on the control of the energy gap through structural parameters and an external electric field. For highly strained CQWs with $x = 0.4$, we obtain a gap of 35 meV, an order of magnitude larger than that reported for binary InAs/GaSb CQWs. Using a dual-gate configuration, we demonstrate an electrical-field-driven topological phase transition, which manifests itself as a re-entrant behavior of the energy gap. The sizeable energy gap and high bulk resistivity obtained in both the topological and normal phases of a single device open the possibility of electrical switching of the edge transport.
Quantum wells (QWs) based on mercury telluride (HgTe) thin films provide a large scale of unusual physical properties starting from an insulator via a two-dimensional Dirac semimetal to a three-dimensional topological insulator. These properties result from the dramatic change of the QW band structure with the HgTe film thickness. Although being a key property, these energy dispersion relations cannot be reflected in experiments due to the lack of appropriate tools. Here we report an experimental and theoretical study of two HgTe quantum wells with inverted energy spectrum in which two-dimensional semimetallic states are realized. Using magneto-optical spectroscopy at sub-THz frequencies we were able to obtain information about electron and hole cyclotron masses at all relevant Fermi level positions and different charge densities. The outcome is also supported by a Shubnikov-de Haas analysis of capacitance measurements, which allows obtaining information about the degeneracy of the active modes. From these data, it is possible to reconstruct electron and hole dispersion relations. Detailed comparative analysis of the energy dispersion relations with theoretical calculations demonstrates a good agreement, reflecting even several subtle features like band splitting, the second conduction band, and the overlaps between the first conduction and first valence band. Our study demonstrates that the cyclotron resonance experiments can be efficiently used to directly obtain the band structures of semimetallic 2D materials.
Electron-hole hybridization in InAs/GaSb double quantum well structures leads to the formation of a mini band gap. We experimentally and theoretically studied the impact of strain on the transport properties of this material system. Thinned samples were mounted to piezo electric elements to exert strain along the [011] and [001] crystal directions. When the Fermi energy is tuned through the mini gap, a dramatic impact on the resistivity at the charge neutrality point is found which depends on the amount of applied external strain. In the electron and hole regimes, strain influences the Landau level structure. By analyzing the intrinsic strain from the epitaxial growth, the external strain from the piezo elements and combining our experimental results with numerical simulations of strained and unstrained quantum wells, we compellingly illustrate why the InAs/GaSb material system is regularly found to be semimetallic.